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Abstract

Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early

immune surveillance and clearance of microorganisms in the airways. Inflammatory signal-

ing must be sufficiently robust to promote host defense but limited enough to prevent

excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-

transcriptional mechanisms of inflammatory gene expression to delicately balance the elab-

oration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely

homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in

the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo,

we observed that Zcchc6 is expressed in mouse and human primary macrophages.

Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observ-

able spontaneous phenotype under basal conditions. Following an intratracheal challenge

with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the

expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were

recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases

in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to

increased neutrophil emigration to the airways during pneumonia, these responses were

not sufficient to impact host defense against infection.
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Introduction

Innate immunity is essential for host protection against pathogens. As an integral member of

pulmonary innate defense, the alveolar macrophage is a first-responder cell type critical to ini-

tiating host immune responses during infection. Resident alveolar macrophages are long-lived

and function to clear inhaled and cellular debris, and trigger innate defenses upon detection of

microbial products [1–3]. As one of the first cells encountering inhaled particles and pathogens

[4], macrophages can initiate and maintain a delicately balanced series of immune responses

robust enough to prevent infection but without injurious inflammation. Transcriptional and

post-transcriptional regulation of cytokines and other inflammatory mediators is an important

means through which immune responses are coordinated to be effective yet appropriate [5–9].

As integral contributors to post-transcriptional mechanisms of RNA regulation [2, 10–17],

RNA terminal uridyltransferases (TUTs) play widespread roles established from in vitro mod-

els, but their integrated functions in mammalian biology and homeostasis remain largely spec-

ulative. We previously reported a role for the RNA terminal uridyltransferase (TUT) enzyme

Zcchc11 (TUT4) in the post-transcriptional regulation of the inflammatory cytokine IL-6 [18].

This enzyme contributes to the expression of IL-6 and growth factors by hepatocytes in young

and rapidly growing mice [19], but otherwise the functional significance of Zcchc11 appears to

be minimal. Zcchc11 has been reported to function in stem cell biology and is essential to the

in vitro maintenance of cellular pluripotency [14, 20], but such roles have yet to be observed in
vivo. The closest mammalian TUT homolog to Zcchc11 is Zcchc6 (TUT7). Zcchc6 uridyltrans-

ferase can uridylate the same miRNAs as Zcchc11 and shows overlapping and somewhat

redundant roles in the in vitro maintenance of pluripotent stem cells [21] [22]. However,

Zcchc6 is capable of uridylating a wide variety of miRNAs [22–24] and even mRNAs [25], sug-

gesting additional biological functions downstream of this enzyme. To our knowledge, the

present studies, focused on the influence of Zcchc6 in mice with and without pneumonia, con-

stitute the first to report consequences of a Zcchc6 deficiency in vivo.

Experimental procedures

Ethics statement

All animal studies were performed in accordance with U.S. Federal Law, and approved by

the Boston University School of Medicine Institutional Animal Care and Use Committee

(IACUC) (Permit #14859). Animals were anesthetized and euthanized using an approved pro-

tocol and all efforts were made to minimize suffering.

Mice

All murine studies were performed under approval of the Boston University School of Medi-

cine Institutional Animal Care and Use Committee (IACUC). Mice were maintained under

pathogen free conditions with access to food and water ad libitum. All experiments were

performed using both male and female mice at 8–16 weeks of age. Experiments using non-

genetically modified animals were conducted with C57BL/6 mice purchased from Jackson

Laboratories (Bar Harbor, ME). The Zcchc6-floxed model was generated by flanking the criti-

cal exons 16 and 17 of the Zcchc6 gene with loxP sites using homologous recombination (Dr.

O’Carroll, manuscript in preparation) so that Cre recombinase-mediated excision leads to a

frame-shift mutation to elicit nonsense-mediated decay of the mutant transcript. To create

Zcchc6-deficient mice, these mice were bred with the B6.FVB-Tg(EIIa-cre)C5379Lmgd/J

mouse (Jackson Laboratories # 003724), which harbors a cre transgene under control of the

ubiquitous EIIa promoter and leads to mutation of floxed alleles in the germline. Selective
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breeding established Zcchc6+/- heterozygotes which lacked the Cre transgene, thereafter bred

together to derive Zcchc6-deficient Zcchc6-/- mice.

Primary human cell isolation and culture

For primary human macrophages, bronchoalveolar lavage (BAL) was performed on healthy,

non-smoking volunteers in accordance with an informed consent protocol approved by Insti-

tutional Review Board of Boston University Medical Center as previously conducted [26].

Alveolar macrophages were isolated by adherence to plastic. Non-adherent cells were removed

by washing and the remaining adherent cells averaged >98% viability as verified by trypan

blue exclusion. Primary human monocytes were isolated as previously described [27]. Periph-

eral blood mononuclear cells (PBMCs) were isolated from peripheral blood of healthy donors.

CD14+ monocytes were isolated from PBMCs using CD14-coated magnetic beads (Miltenyi

Biotech), and cell purity was assessed to be>95% by FACS. The human monocyte cell lines

U937 and THP-1 were obtained from the American Type Culture Collection (ATCC). For the

differentiation experiment, cells were seeded in 6-well tissue culture dishes, stimulated with 20

ng/mL (U937) or 5 ng/mL (THP-1) Phorbol 12-myristate 13-acetate (PMA; Sigma Aldrich

P8139) overnight, and collected the next day in protein lysis buffer.

Murine bronchoalveolar and pleural lavage

Lungs were lavaged with ice-cold PBS 10 times in 1 mL increments as previously described

[26, 28]. Isolated cells were centrifuged at 300 x g for 5 minutes at 4˚C, then cytocentrifuged

and stained with Diff-Quick (Dade-Behring) to perform cell differential analysis. Total RNA

was prepared using Qiazol, and purified using an RNAeasy column (Qiagen). To isolate mac-

rophages from the pleural cavities, mice were sacrificed and the pleural space was lavaged as

previously described [29]. In short, after euthanasia, the thoracic cavity is exposed and a small

incision is inserted into the dorsal tip of the diaphragm. Using a 1 mL sterile Pasteur pipet, the

pleural cavity is lavaged 8 times with 1 mL of ice-cold RPMI 1640 medium supplemented with

1X penicillin/streptomycin and 2 mM L-glutamine. Isolated cells were centrifuged at 300 x g
for 5 minutes at 4˚C, then cytocentrifuged and stained with Diff-Quick (Dade-Behring) to per-

form cell differential analysis.

Murine bone marrow macrophage isolation, culture and stimulation

Murine bone marrow macrophages were isolated as previously described [30]. For the differ-

entiation time course, macrophages were collected from C57BL/6 mice and seeded onto 10

cm2 petri dishes. Cells were collected in Cell Stripper solution (Corning, 25-056-CI) at speci-

fied times of adherence under cell culture conditions and lysed using protein lysis buffer. For

the stimulation experiments, cells were seeded onto petri dishes with RPMI, 10% fetal bovine

serum, and 20% L929 supernatant and allowed to differentiate into macrophages over 7 days

as previously described [30, 31]. For stimulations, adherent macrophages were removed with

Cell Stripper solution and subsequently plated on non-adherent 6-well plates at a density of

1x106 cells/well. The media was replaced with RPMI containing 10% FBS and supplemented

with vehicle or S. pneumoniae. Bacteria were removed after 2 hours by washing cells with anti-

biotic containing complete media. Supernatants were collected 4 hours after washing and

CXCL1 concentrations were quantified in cellular supernatants by DuoSet ELISA (R&D

Systems).

Zcchc6 expression in macrophages and role in immunity
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Protein Isolation and immunoblotting

For protein measurements, cells and tissues were snap frozen in liquid nitrogen for cryosto-

rage at -80˚C. Cellular lysis and protein extraction was performed using lysis buffer containing

20mM Tris-HCl pH 7.4, 150mM NaCl, 1mM MgCl2, 0.5% NP-40. Total protein content was

quantified using the bicinchoninic acid (BCA) assay (Sigma). For all Western blots, total pro-

tein was resolved through 3–8% Tris-Acetate polyacrylamide gels (Life Technologies) and

transferred to a PVDF membrane (Immobilon) using the NuPAGE blotting system (Invitro-

gen). The mouse reactive Zcchc6 antibody was obtained from Proteintech (25196-1-AP). The

human reactive Zcchc6 antibody was obtained from Sigma Aldrich (HPA020615). An anti-

rabbit, HRP-conjugated secondary antibody (Cell Signaling Technology #7074S) followed by

ECL chemiluminescence (GE Healthcare, RPN2232) was used for protein detection.

Quantitative RT-PCR analysis

Total RNA was isolated following the RNAeasy kit protocol (Qiagen). mRNA expression was

measured using the TaqMan RNA-to-Ct 1-Step kit (Life Technologies). Primers specific for

CXCL1 CXCL2, CXCL5, IL-6, TNF and 18s ribosomal RNA were synthesized by Integrated

DNA Technologies and have been described previously [28]. The murine Zcchc6 primer/

probe set was obtained from Applied Biosystems (#1189979). All qRT-PCR assays were per-

formed on a real-time PCR machine (Applied Biosystems) using 10 ng of total RNA. For each

mRNA, fold induction was normalized to the content of 18S rRNA and expressed as fold-

induction relative to a control group.

Microarray analysis

Total RNA was isolated from alveolar macrophages as described above and quality assessed by

using an Agilent Bioanalyzer. Affymetrix GeneChip Mouse Gene ST 2.0 arrays were used to

determine transcriptomic profiles. Microarray analysis and quantitative assessment were per-

formed by the Boston University Medical Campus Microarray and Sequencing Resource. CEL

files were normalized to produce gene-level expression values using the implementation of

the Robust Multiarray Average (RMA) [32] in the affy package (version 1.36.1)[33] included

within in the Bioconductor software suite (version 2.11) and an Entrez Gene-specific probeset

mapping (version 17.0.0) from the Molecular and Behavioral Neuroscience Institute (Brainar-

ray) at the University of Michigan. Array quality was assessed by computing Relative Log

Expression (RLE) and Normalized Unscaled Standard Error (NUSE) using the affyPLM Bio-

conductor package (version 1.34.0) [34]. Moderated t tests were performed using the limma
package (version 3.14.4). Correction for multiple hypothesis testing was accomplished using

the Benjamini-Hochberg false discovery rate (FDR) [35]. Analyses were performed using the R

environment for statistical computing (version 2.15.1). Raw data are available at the NCBI

Gene Expression Omnibus archive with the accession GSE98222.

Experimental pneumonia

For lung infections, mice were anesthetized by intraperitoneal injection with a 50 mg/kg keta-

mine and 5 mg/kg xylazine solution. Tracheas were surgically exposed and cannulated using

an angiocatheter. Streptococcus pneumoniae serotype 19F (Sp19, strain EF3030, provided by

Dr. M. Lipsitch, Harvard School of Public Health) or Escherichia coli were intratracheally

instilled into the left lung lobe. Target instillations of 5 x 106 CFU/mL (Sp19) or 2 x 106 CFU/

mL (E.coli) or were subsequently verified by serial dilutions of the input on 5% sheep blood

agar plates.

Zcchc6 expression in macrophages and role in immunity
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Statistical analysis

Statistical analyses were determined using GraphPad Prism (GraphPad Software). The sta-

tistical test used is denoted in the figure legend. A P-value of less than 0.05 was considered

significant. For microarray studies, false discovery rate was used to correct for multiple

comparisons.

Results

Zcchc6 is expressed in adult lungs and alveolar macrophages

Previous reports on Zcchc6 and Zcchc11 expression have suggested that both proteins are

developmentally regulated and undetectable in adult tissues and organs [24]. At first thought,

these findings are clearly anticipated given that abundant levels of mature let-7 microRNA

family members are positively associated with differentiated tissue [36] and that Zcchc6 and

Zcchc11 are negative regulators of let-7 [21]. However, both enzymes have been detected in at

least some cells and tissues of adult animals [18, 19, 24]. The degree to which each TUT is dif-

ferentially expressed between major tissues is currently unknown. To determine relative levels

of Zcchc6 and Zcchc11 mRNA in adult tissues, we assessed transcripts encoding both enzymes

by qRT-PCR. As shown in Fig 1A, Zcchc6 and Zcchc11 mRNA is detectable in all tissues

examined. Interestingly, when we sought to identify where Zcchc6 mRNA was significantly

enriched relative to Zcchc11 expression (Zcchc6 mRNA was normalized to Zcchc11 mRNA)

we found that murine lungs exhibited enhanced Zcchc6 levels thus suggesting a more promi-

nent role for this TUT.

In an effort to determine which lung cell(s) express Zcchc6, we queried a previously pub-

lished microarray dataset from our laboratory that profiled epithelial and non-epithelial cell

populations isolated during pneumonia (GSE71623) [37]. Zcchc6 was 3.3 fold more abun-

dant in non-epithelial cells than epithelial cells during pneumonia (FDR q<0.05). These

data also suggested that Zcchc6 was selectively enriched over Zcchc11 in adult lungs and that

non-epithelial cell sources predominated as sources of Zcchc6 expression. Hence, given pre-

vious reports that Zcchc6 and Zcchc11 have overlapping and compensatory function, we

sought to determine whether Zcchc6 plays a predominant role in the myeloid compartment

of the lung.

Alveolar macrophages represent a critical first line of defense against inhaled pathogens in

the lungs [38–40] Given that Zcchc6 expression was enriched in non-epithelial lung popula-

tions of cells, we examined Zcchc6 protein expression in alveolar macrophages. Human alveo-

lar macrophages collected from healthy donors by BAL contain Zcchc6 protein that is readily

detectable by immunoblot. We observed that Zcchc6 protein is not expressed in peripheral

blood monocytes, but is induced when these cells were differentiating during cell culture adhe-

sion, in vitro (Fig 1B). Although previous reports suggest that Zcchc6 may be restricted to un-

differentiated cell types [24], these findings indicate the opposite expression pattern within the

myeloid lineage. To further test whether Zcchc6 protein expression results from monocyte-to-

macrophage differentiation, we used the human monocytic cell lines U937 and THP-1, whose

maturation can be pharmacologically induced in cell cultures [41]. As shown in Fig 1C,

Zcchc6 protein expression was markedly induced upon monocyte-to-macrophage differentia-

tion in both cell lines. Similar to the human models of macrophage differentiation, we also

observed enhanced Zcchc6 protein expression in mouse bone marrow-derived macrophages

during differentiation in vitro (Fig 1D). These multiple lines of evidence consistently demon-

strated the induction of the RNA uridyltransferase Zcchc6 during the progression from mono-

cytes to macrophage-like cells.

Zcchc6 expression in macrophages and role in immunity
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Zcchc6-deficient mice are viable and born in Mendelian ratios

To determine whether Zcchc6 is essential for macrophage function in vivo, we created

Zcchc6-deficient mouse model (Zcchc6-/-). Genomic deletion was confirmed via PCR on

genomic tail DNA samples (Fig 2A), and mRNA analysis revealed effective loss of lung

expression due to mutation (Fig 2B). At the protein level, immunoblot analysis confirmed a

complete loss of Zcchc6 protein expression in all tissues examined (Fig 2C). These results

Fig 1. Zcchc6 and Zcchc11 expression in adult mouse tissues. (A) Total RNA was prepared from C57BL/6 mouse tissues and was assayed for

Zcchc6 and Zcchc11 mRNA expression by qRT-PCR. Data are normalized to 18S rRNA and displayed as fold induction over Zcchc11 expression

(n = 3,3). *p<0.05 ***p<0.001 by two-way ANOVA with Bonferroni post-test. (B)(C) Zcchc6 protein expression was measured by immunoblot in

primary human monocyte derived macrophages (4 donors), human monocytes (5 donors), and human alveolar macrophages (3 donors). Lung lysates

generated from WT or Z6 deficient mouse lungs were used as a control in (C). Zcchc6 protein expression was assessed in (D) PMA or vehicle treated

U937 or THP-1 human monocytic cell lines and in (E) mouse bone marrow-derived macrophages during a 7-day time-course of differentiation.

https://doi.org/10.1371/journal.pone.0179797.g001
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demonstrate that Zcchc6 protein is widely-expressed in wild type mice but eliminated in

Zcchc6-targeted animals. Because of the 50% perinatal mortality observed in Zcchc11-/- mice

[19], pups born from breeding heterozygous Zcchc6+/- × Zcchc6+/- mating pairs were closely

monitored. Unlike Zcchc11-deficient animals, wild type, heterozygous and homozygous

Zcchc6-/- mice exhibited normal litter sizes and were born in ratios consistent with Mende-

lian patterns of inheritance (Fig 2D). No changes in anatomy or behavior were observed as

mice aged to adulthood. Taken together, our data demonstrate that genetic loss of Zcchc6 is

compatible with murine life.

Fig 2. Establishment of a mouse model of Zcchc6 deficiency. (A) Gene rearrangement in Zcchc6-/- mice at the DNA level was confirmed by PCR

of tail genomic DNA. (B) Zcchc6 mRNA expression was measured by qRT-PCR from total left lobe lung RNA and normalized to 18S rRNA. Data

expressed as mean and SEM, ***p<0.001 by Student’s t-test (C) Immunoblot analysis of Zcchc6 protein expression across multiple tissue cell lysates.

(D) Genotypes of pups weaned from Zcchc6+/- x Zcchc6+/- crosses. Dotted line indicated expected frequency of homozygous animals.

https://doi.org/10.1371/journal.pone.0179797.g002
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Homeostatic macrophage cell number and transcriptomic profiles are

not impacted by Zcchc6 deficiency

Our data demonstrate that Zcchc6 is expressed in macrophages and induced during the transi-

tion from monocytes to macrophage-like cells. Given these observations and that the Zcchc6

homologue Zcchc11 mediates cell proliferation [42], we sought to determine whether baseline

homeostatic macrophage numbers were altered in the Zcchc6-deficient animals. We observed

no significant differences in the number of alveolar macrophages recovered by bronchoalveo-

lar lavage (Fig 3A), and as expected, neutrophils were rarely recoverable from uninfected mice

in the presence or absence of Zcchc6 (Fig 3B). Since macrophages also reside in the pleural

space, we lavaged the pleural cavity in which we found no differences in macrophage numbers

between genotypes (Fig 3C).

Without evidence of a biological phenotype under basal conditions, we sought to determine

whether loss of Zcchc6 would yield a molecular phenotype. To assess the role of Zcchc6 in the

regulation of gene expression, we profiled BAL accessible macrophages by microarray. Total

RNA was prepared from alveolar macrophages isolated from Zcchc6+/+ and Zcchc6-/- mice.

Global mRNA expression was determined using Affymetrix Mouse Gene 2.0 ST microarrays.

To our surprise, we discovered that not a single mRNA was differentially expressed between

genotypes to a statistically significant degree (FDR q< 0.05, GSE98222). Gene set enrichment

analysis demonstrated an increase in GO Biological processes primarily associated with cell

cycle regulation and DNA replication (Table 1) Collectively, these data suggest that that

Zcchc6 is dispensable for the development and maintenance of the lung macrophage popula-

tion, as well as basal transcriptional state.

Maximal innate immune responses in macrophages require Zcchc6

during pneumonia

Given no observable biological or molecular phenotype of Zcchc6-deficient mice under basal

conditions, we next sought to determine the influence of Zcchc6 in a setting of physiological

duress, bacterial pneumonia. Host defense against bacterial lung infections is coordinated

amongst macrophages and multiple other cell types [43, 44]. We intratracheally infected litter-

mate Zcchc6+/+ and Zcchc6-/- mice with S. pneumoniae serotype 19 (Sp19). Early host immune

cell recruitment was assessed after 4 hours of infection due to the potential impact on bacterial

growth over 30 hours of infection. We observed that mice deficient in Zcchc6 exhibited

increased total cells recovered from the airspaces by lavage early during infection (Fig 4A). Mac-

rophage numbers were not significantly altered (Fig 4B), however there was a significant increase

in emigrated neutrophils (Fig 4C) at 4 hours after infection. Despite this difference in early neu-

trophil recruitment, bacterial burdens were equivalent in Zcchc6+/+ and Zcchc6-/- mice (Fig 4D)

at 30 hours after infection. To assess the potential impact of Zcchc6-deficiency on host defense,

we investigated a second model of acute bacterial pneumonia. We intratracheally infected litter-

mate Zcchc6+/+ and Zcchc6-/- mice with the Gram-negative pathogen E. coli. After 24 hours of

infection, total cell counts and BAL differentials were unchanged (S1 Fig). In addition, bacterial

burdens in both the lung and circulation were equivalent in Zcchc6+/+ and Zcchc6-/- mice (S1

Fig). Taken together with the Sp19 results, these data provide additional evidence that Zcchc6-

deficiency is not sufficient to alter host defense during acute bacterial pneumonia.

To investigate potential signals upstream of enhanced neutrophil recruitment we analyzed

three major murine neutrophil chemokines (CXCL1, CXCL2, and CXCL5), as well as TNF

and IL-6 by qRT-PCR. Significantly enhanced induction of CXCL5, IL-6 and CXCL1 was

observed in Zcchc6-/- mice with similar trends in the other targets analyzed (Fig 4E). To

further test whether Zcchc6 expression regulates macrophage-specific gene expression during

Zcchc6 expression in macrophages and role in immunity
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Fig 3. Homeostatic macrophage cell numbers are unchanged in Zcchc6-deficient mice under basal

conditions. (A) Total alveolar macrophages and (B) airspace neutrophils were isolated by bronchoalveolar

lavage and quantified by hemocytometer and cellular differential analysis by Diffquick staining. (C) Pleural

macrophages were collected by lavage and quantified by hemocytometer. Data were determined to be

statistically non-significant by Student’s t-test.

https://doi.org/10.1371/journal.pone.0179797.g003
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bacterial stimulation we isolated BMDMs from Zcchc6+/+ or Zcchc6-/- mice and exposed them

directly to Sp19. Consistent with our in vivo findings, S. pneumoniae-induced CXCL1 protein

expression was increased in the absence of Zcchc6 (Fig 4F). Collectively, these results indicate

that Zcchc6 regulates macrophage innate immune responses; although, its impact on macro-

phage-dependent immunity was insufficient to yield differences in antibacterial defense within

the current experimental circumstances.

Discussion

Zcchc6 and Zcchc11 TUTs have been reported to regulate miRNA maturation in embryonic

stem cells and cancer cell lines by oligo-uridylating let-7 family member precursor miRNAs in

conjunction with Lin28a [14, 15, 21, 45, 46]. In the absence of Lin28a, both TUTs were shown

to mono-uridylate group II miRNAs resulting in enhanced Dicer processing and increased

mature levels of the cognate miRNA [22]. Regardless of whether Lin28 is present or absent,

Zcchc6 and Zcchc11 were shown to play a key role in the post-transcriptional maturation of

mature miRNA [47]. All of these results, however, were obtained from cell culture systems,

and our results from mice deficient in Zcchc6 suggest that any contributions of Zcchc6 alone

to embryonic stem cell biology are not essential for development. As suggested previously

[48], modest or absent phenotypes due to loss of a single TUT, Zcchc6, may be due in part to

overlapping and functionally compensatory roles of these TUTs in vivo. Future studies will be

required to investigate whether double knockout models of Zcchc6 and Zcchc11 exhibit more

pronounced phenotypes in vivo.

While previous studies indicate a role for Zcchc6, and other TUTs, in undifferentiated cells

and tissues, we observed a widespread expression of Zcchc6 protein in all adult somatic tissues

examined. Given potential compensatory regulation between TUTs [24, 49], we compared

Zcchc6 to Zcchc11 and asked whether there were any tissues where Zcchc6 was selectively

Table 1. Top 20 GO Biological process terms.

Gene Set Name Gene Set Size Normalized Enrichment Score (NES) FDR q value

CELL_CYCLE_PROCESS 185 2.96 0.00

M_PHASE 109 2.85 0.00

MITOTIC_CELL_CYCLE 145 2.85 0.00

CELL_CYCLE_PHASE 162 2.82 0.00

MITOSIS 79 2.78 0.00

M_PHASE_OF_MITOTIC_CELL_CYCLE 82 2.77 0.00

CELL_CYCLE_GO_0007049 299 2.61 0.00

DNA_REPAIR 120 2.52 0.00

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 116 2.48 0.00

DNA_REPLICATION 97 2.46 0.00

CHROMOSOME_SEGREGATION 30 2.45 0.00

DNA_METABOLIC_PROCESS 245 2.43 0.00

DNA_DEPENDENT_DNA_REPLICATION 53 2.41 0.00

RESPONSE_TO_DNA_DAMAGE_STIMULUS 154 2.41 0.00

SISTER_CHROMATID_SEGREGATION 16 2.35 0.00

MICROTUBULE_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS 35 2.34 0.00

CELL_CYCLE_CHECKPOINT_GO_0000075 46 2.29 1.29E-05

MITOTIC_SISTER_CHROMATID_SEGREGATION 15 2.29 1.27E-05

RESPONSE_TO_ENDOGENOUS_STIMULUS 189 2.27 1.24E-05

INTERPHASE_OF_MITOTIC_CELL_CYCLE 58 2.26 1.17E-05

https://doi.org/10.1371/journal.pone.0179797.t001
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Fig 4. Zcchc6 minimally directs neutrophil emigration during pneumococcal pneumonia. (A) Total BAL cell counts (B) alveolar macrophage

numbers and (C) neutrophil emigration were assessed by bronchoalveolar lavage from Zcchc6+/+ or Zcchc6-/- mice infected with of Sp19 i.t. for 4

hours. **p<0.01 by Student’s t-test. (D) Bacterial lung burdens were determined from Zcchc6+/+ or Zcchc6-/- mice 30 hours post intratracheal

instillation of Sp19. (E) Cytokine mRNA expression was measured by qRT-PCR on total lung left lobe RNA isolated from Sp19-infected Zcchc6+/+ and

Zcchc6-/- mice at 4 hours post infection. Data are normalized to 18S rRNA levels and expressed as fold induction over Zcchc6+/+. n = 6,8; *p<0.05 by

Student’s t-test. (F) CXCL1 protein levels were measured by ELISA in supernatants collected from cultured BMDMs (n = 4,3) stimulated with 1 x 106

CFU/mL Sp19.

https://doi.org/10.1371/journal.pone.0179797.g004
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enriched over Zcchc11. In the liver and in the lungs, Zcchc6 mRNA was significantly elevated

over Zcchc11 mRNA. Zcchc6 was expressed in myeloid cells in humans and mice and was

induced upon the transition from monocyte to macrophage-like cells. The spatially and tem-

porally distinct expression patterns of Zcchc6 and Zcchc11 identify select instances where

overlapping roles are unlikely. The observation that Zcchc6 was increased with macrophage

differentiation was unanticipated, since both Zcchc6 and Zcchc11 often mark less differenti-

ated cells [24] and since Zcchc11 is not observed in any myeloid cells ([19] as well as data not

shown). Despite its prominent expression, and the enrichment of proliferative genes, Zcchc6

deficiency did not affect alveolar macrophage numbers or transcriptional profiles under basal

conditions, demonstrating this enzyme to be dispensable for macrophage differentiation.

Recent studies have shown that during stress responses there are dramatic changes in gene

expression that occur independently of transcriptional control mechanisms [50, 51]. Given

previous reports demonstrating TUT-dependent roles in post-transcriptional gene regulation

and that Zcchc6 does not impact transcriptomic changes under basal conditions, we sought to

determine whether Zcchc6-deficiency exerts any influence on gene expression under infec-

tious stress. In contrast to homeostatic conditions, we report an increase in cytokine expres-

sion during pneumonia in the Zcchc6-deficient mice compared to wildtype controls,

particularly IL-6 and CXCL1. An apparent reduction of IL-6 by Zcchc6 was especially surpris-

ing given that Zcchc11 is essential to maximal induction of this cytokine [18]. We did not

observe increased expression of Zcchc11 due to Zcchc6 deficiency, so a compensatory increase

in Zcchc11-mediated IL-6 expression is unlikely to explain these results. Instead, these two

TUTs may exert opposing roles in the modulation of IL-6 expression. The miRNAs that target

cytokine transcripts can silence expression, which applies to the Zcchc11 target miR-26 [18].

Conversely, miRNAs have been reported to enhance cytokine expression [52, 53]. The mecha-

nism by which Zcchc6 regulates IL-6 expression remains to be determined, but could involve

miRNA uridylation as has been observed for Zcchc11 [18]. Elevated macrophage cytokine

expression due to Zcchc6 deficiency was associated with accelerated neutrophil recruitment

during pneumonia, but this did not impact bacterial burdens in the experimental conditions

tested. Regardless, Zcchc6-dependent cytokine regulation may serve as an important determi-

nant of inflammation, immunopathology, and/or pathogen clearance under circumstances yet

to be investigated. To our knowledge, the regulation of macrophage cytokines is the very first

functional role for Zcchc6 that has emerged from an animal model of Zcchc6 deficiency.

Accumulating evidence has shown that nontemplated 30 RNA tailing, in particular uridyla-

tion, is more prevalent within mammalian transcriptomes than previously thought. It was pre-

viously shown that miRNA-directed cleavage of mRNA products were uridylated [54].

Additionally, histone mRNAs were demonstrated to be uridylated and subsequently degraded

at the end of the cell cycle S phase [55–58]. Recently, the development of a TAIL-Seq method

provided a more comprehensive glimpse at the genome-wide assessment of mRNA 30 tail uri-

dylation in mammalian cells [25, 59]. The majority of mRNAs in NIH3T3 and HeLa cells are

terminally uridylated and surprisingly, these uridylation signatures were detected predomi-

nantly on short polyadenylate tails [25, 59]. These results further supported the notion that

mRNAs designated for and in the process of decay are flagged by 30 terminal uridylation. In

the context of infection and inflammation, host innate responses result in a dramatic upregula-

tion of a diverse set of inflammatory mediator mRNAs. Most cytokine and chemokine tran-

scripts are extremely labile and contain a multitude of AU-rich elements within their 30 UTRs

which could have a profound impact on the temporal order of inflammatory gene expression

[60]. It is conceivable that Zcchc6-mediated addition of uridines could serve as another post-

transcriptional regulatory step to prevent excessive inflammation. If so, variations in these

pathways, such as by genetic or environmental alterations of Zcchc6 expression or activity,
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could influence susceptibility to diverse inflammatory disorders such as colitis, arthritis, and

more. Future studies are required to delineate how Zcchc6 may regulate cytokine expression

by macrophages in diverse inflammatory settings.

We are just beginning to understand the complex role(s) of TUT family members and their

function in gene regulation and physiology in integrated animal systems. In this study we pres-

ent the first mouse model of Zcchc6 deficiency. Zcchc6 does not impact development or sur-

vival through young adulthood. Notably, Zcchc6 expression is increased during the transition

from monocytes to macrophage-like cells, where it contributes to cytokine regulation in

response to acute stimulation. These results were observed during a model of bacterial pneu-

monia, and very well may be relevant to other infectious or inflammation-based disorders as

well. Future studies are needed to determine if other immune-related phenotypes result from

loss of Zcchc6-dependent activities. In addition, future studies based on dual deficiency of

both Zcchc6 and Zcchc11 are critical to determine whether embryonic development or other

integrated biological systems in living animals specifically requires TUT-dependent biology.

Supporting information

S1 Fig. Zcchc6 deficiency does not impact the host response to Gram-negative pneumonia.

(A) Total BAL cell counts (B) airspace cell differentials (C) blood CFU and (D) lung CFU were

assessed in Zcchc6+/+ or Zcchc6-/- mice infected with of 2 x 106 CFU E. coli i.t. for 24 hours.

Data were determined to be statistically- non significant by Student’s t-test (A and B) or Mann

Whitney test (C and D).
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