1,396 research outputs found

    Water interaction differences determine the relative energetic stability of the polyproline II conformation of the alanine dipeptide in aqueous environments

    Full text link
    Although subsequent studies have provided extensive support for the 1968 Tiffany and Krimm proposal (Biopolymers 6, 1379) that the polyproline II (PPII) conformation is a significant component of the structure of unordered polypeptide chains, two issues are still not fully resolved: the PPII persistence length in a chain and the source of its relative stability with respect to the β‐conformation. We examine the latter question by studying the B97‐D/6‐31++G ** energy, in the absence and presence of a reaction field, of the alanine dipeptide hydrated by various amounts of explicit waters and resolving this into its three components: the energies of the individual solvated peptides and water structures plus the interaction energy involving them. We find that the relative stability of the PPII conformation is determined mainly by the difference in the interaction energies of the water structures in the near‐peptide layers. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 789–794, 2012.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92429/1/22064_ftp.pd

    Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper

    Get PDF
    This is the post-print version of the final paper published in Advanced Engineering Informatics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.The purpose of this research is twofold: first, to undertake a thorough appraisal of existing Input Variable Selection (IVS) methods within the context of time-critical and computation resource-limited dimensionality reduction problems; second, to demonstrate improvements to, and the application of, a recently proposed time-critical sensitivity analysis method called EventTracker to an environment science industrial use-case, i.e., sub-surface drilling. Producing time-critical accurate knowledge about the state of a system (effect) under computational and data acquisition (cause) constraints is a major challenge, especially if the knowledge required is critical to the system operation where the safety of operators or integrity of costly equipment is at stake. Understanding and interpreting, a chain of interrelated events, predicted or unpredicted, that may or may not result in a specific state of the system, is the core challenge of this research. The main objective is then to identify which set of input data signals has a significant impact on the set of system state information (i.e. output). Through a cause-effect analysis technique, the proposed technique supports the filtering of unsolicited data that can otherwise clog up the communication and computational capabilities of a standard supervisory control and data acquisition system. The paper analyzes the performance of input variable selection techniques from a series of perspectives. It then expands the categorization and assessment of sensitivity analysis methods in a structured framework that takes into account the relationship between inputs and outputs, the nature of their time series, and the computational effort required. The outcome of this analysis is that established methods have a limited suitability for use by time-critical variable selection applications. By way of a geological drilling monitoring scenario, the suitability of the proposed EventTracker Sensitivity Analysis method for use in high volume and time critical input variable selection problems is demonstrated.E

    A Directional Entropic Force Approach to Assemble Anisotropic Nanoparticles into Superlattices

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102143/1/14230_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102143/2/ange_201306009_sm_miscellaneous_information.pd

    Towards a Tetravalent Chemistry of Colloids

    Full text link
    We propose coating spherical particles or droplets with anisotropic nano-sized objects to allow micron-scale colloids to link or functionalize with a four-fold valence, similar to the sp3 hybridized chemical bonds associated with, e.g., carbon, silicon and germanium. Candidates for such coatings include triblock copolymers, gemini lipids, metallic or semiconducting nanorods and conventional liquid crystal compounds. We estimate the size of the relevant nematic Frank constants, discuss how to obtain other valences and analyze the thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter

    Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS

    Full text link
    We present a microscopic theory that describes the ordering of two distinct ligands on the surface of a faceted nanoparticle. The theory predicts that when one type of ligand is significantly bulkier than all others, the larger ligands preferentially align themselves along the edges and vertices of the nanoparticle. Monte Carlo simulations confirm these predictions. We show that the intrinsic conformational entropy of the ligands stabilizes this novel edge-aligned phase.Comment: 11 pages, 10 figure

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle

    Intrinsic electrochemical activity of single walled carbon nanotube–Nafion assemblies

    Get PDF
    The intrinsic electrochemical properties and activity of single walled carbon nanotube (SWNT) network electrodes modified by a drop-cast Nafion film have been determined using the one electron oxidation of ferrocene trimethyl ammonium (FcTMA+) as a model redox probe in the Nafion film. Facilitated by the very low transport coefficient of FcTMA+ in Nafion (apparent diffusion coefficient of 1.8 × 10−10 cm2 s−1), SWNTs in the 2-D network behave as individual elements, at short (practical) times, each with their own characteristic diffusion, independent of neighbouring sites, and the response is diagnostic of the proportion of SWNTs active in the composite. Data are analysed using candidate models for cases where: (i) electron transfer events only occur at discrete sites along the sidewall (with a defect density typical of chemical vapour deposition SWNTs); (ii) all of the SWNTs in a network are active. The first case predicts currents that are much smaller than seen experimentally, indicating that significant portions of SWNTs are active in the SWNT–Nafion composite. However, the predictions for a fully active SWNT result in higher currents than seen experimentally, indicating that a fraction of SWNTs are not connected and/or that not all SWNTs are wetted completely by the Nafion film to provide full access of the redox mediator to the SWNT surface

    Structure of DNA-Functionalized Dendrimer Nanoparticles

    Full text link
    Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single stranded DNAs (ssDNAs). The four ssDNA strands that are attached via alkythiolate [-S (CH2)6-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich ssDNA strands than pyrimidine rich ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticle was found to be independent of base composition of ssDNAs and was observed to be around 19.5 {\AA} and 22.4 {\AA} when we used G3 and G4 PAMAM dendrimer as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecule apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticle and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.Comment: 13 pages, 10 figures, 3 Table

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
    corecore