61 research outputs found
Covariant C and O Isotope Trends in Arctic Carbonate Crusts and ALH 84001: Potential Biomarker or Indicator of Cryogenic Formation Environment?
This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples
Cathodoluminescence Instrumentation for Analysis of Martian Sediments
International audienceThe morphologic study of the surface of Mars reveals that liquid water existed during the first few hundred millions of years of the planet's history (e.g. Smith et al. 1999). The flow of water produced extensive erosion in some place, but also large sedimentary basins. With a long enough duration of the presence of liquid water and the oxidation of basalts, the emergence of biological activity may have eventually occurred, as on Earth. The detection of biomarkers at the surface of Mars is one of the main challenges of current and planned planetary exploration missions (e.g. Westall et al. 2000). Looking for a fossil or present biological activity may be approached by the search for cells, but also by the study of the results of their activity and their interface with the sedimentary environment. Such bio-sedimentations are known among the oldest terrestrial fossils and testify to the earliest terrestrial bioactivity. A discovery of such bio-sedimentations on the Martian surface would be of prime interest for addressing some of the key goals in exobiology. Cathodoluminescence (CL) is a method relevant to the search for life, as it is in line with these analytical goals of detecting bio-sedimentations (Barbin et al. 1999), and it fits well with robotic facilities usable in modern space missions (Blanc et al. 1999, Thomas et al. 2002. 2005). An established technique, cathodoluminescence is a newcomer to Martian exploration, whereit is expected to contribute to the mineralogical characterisation of sedimentary rocks, to the search for biomarkers revealing past biological activity, and to identify past geochemical conditions (Melezhik et al. 1999; Denson et al. 2007). CL is one of the best methods when the growth dynamics, microstructure, and origin of minerals need to be determined, such as with Martian sediments. CL has become an important standard technique for studying geological materials, offering a wide spectrum of applications (Marshall 1988; Barker and Kopp 1991; Barbin and Schvoerer 1997; Pagel et al. 2000). However, it is in the field of sedimentology and petrography that CL has proved to be especially valuable
Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment
The University of Winnipeg's HOSERLab was established with funding from the Canada Foundation for Innovation, the Manitoba Research Innovations Fund and the Canadian Space Agency, whose support is gratefully acknowledged. This study was supported with grants from the Canadian Space Agency through their FAST program, NSERC, and UWinnipeg.This work details the laboratory analysis of a suite of 10 samples collected from an inverted fluvial channel near Hanksville, Utah, USA as a part of the CanMars Mars Sample Return Analogue Deployment (MSRAD). The samples were acquired along the rover traverse for detailed off-site analysis to evaluate the TOC and astrobiological significance of the samples selected based on site observations, and to address one of the science goals of the CanMars mission: to evaluate the ability of different analytical techniques being employed by the Mars2020 mission to detect and characterize any present biosignatures. Analytical techniques analogous to those on the ExoMars, MSL and the MER rovers were also applied to the samples. The total organic carbon content of the samples was <0.02% for all but 4 samples, and organic biosignatures were detected in multiple samples by UV–Vis–NIR reflectance spectroscopy and Raman spectroscopy (532 nm, time-resolved, and UV), which was the most effective of the techniques. The total carbon content of the samples is < 0.3 wt% for all but one calcite rich sample, and organic C was not detectable by FTIR. Carotene and chlorophyll were detected in two samples which also contained gypsum and mineral phases of astrobiological importance for paleoenvironment/habitability and biomarker preservation (clays, gypsum, calcite) were detected and characterized by multiple techniques, of which passive reflectance was most effective. The sample selected in the field (S2) as having the highest potential for TOC did not have the highest TOC values, however, when considering the sample mineralogy in conjunction with the detection of organic carbon, it is the most astrobiologically relevant. These results highlight importance of applying multiple techniques for sample characterization and provide insights into their strengths and limitations.PostprintPeer reviewe
Recommended from our members
A Novel Approach to Identifying Trajectories of Mobility Change in Older Adults
Objectives: To validate trajectories of late-life mobility change using a novel approach designed to overcome the constraints of modest sample size and few follow-up time points. Methods: Using clinical reasoning and distribution-based methodology, we identified trajectories of mobility change (Late Life Function and Disability Instrument) across 2 years in 391 participants age ≥65 years from a prospective cohort study designed to identify modifiable impairments predictive of mobility in late-life. We validated our approach using model fit indices and comparing baseline mobility-related factors between trajectories. Results: Model fit indices confirmed that the optimal number of trajectories were between 4 and 6. Mobility-related factors varied across trajectories with the most unfavorable values in poor mobility trajectories and the most favorable in high mobility trajectories. These factors included leg strength, trunk extension endurance, knee flexion range of motion, limb velocity, physical performance measures, and the number and prevalence of medical conditions including osteoarthritis and back pain. Conclusions: Our findings support the validity of this approach and may facilitate the investigation of a broader scope of research questions within aging populations of varied sizes and traits
The MOBILIZE Boston Study: Design and methods of a prospective cohort study of novel risk factors for falls in an older population
<p>Abstract</p> <p>Background</p> <p>Falls are the sixth leading cause of death in elderly people in the U.S. Despite progress in understanding risk factors for falls, many suspected risk factors have not been adequately studied. Putative risk factors for falls such as pain, reductions in cerebral blood flow, somatosensory deficits, and foot disorders are poorly understood, in part because they pose measurement challenges, particularly for large observational studies.</p> <p>Methods</p> <p>The MOBILIZE Boston Study (MBS), an NIA-funded Program Project, is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. Using a door-to-door population-based recruitment, we have enrolled 765 persons aged 70 and older. The baseline assessment was conducted in 2 segments: a 3-hour home interview followed within 4 weeks by a 3-hour clinic examination. Measures included pain, cerebral hemodynamics, and foot disorders as well as established fall risk factors. For the falls follow-up, participants return fall calendar postcards to the research center at the end of each month. Reports of falls are followed-up with a telephone interview to assess circumstances and consequences of each fall. A second assessment is performed 18 months following baseline.</p> <p>Results</p> <p>Of the 2382 who met all eligibility criteria at the door, 1616 (67.8%) agreed to participate and were referred to the research center for further screening. The primary reason for ineligibility was inability to communicate in English. Results from the first 600 participants showed that participants are largely representative of seniors in the Boston area in terms of age, sex, race and Hispanic ethnicity. The average age of study participants was 77.9 years (s.d. 5.5) and nearly two-thirds were women. The study cohort was 78% white and 17% black. Many participants (39%) reported having fallen at least once in the year before baseline.</p> <p>Conclusion</p> <p>Our results demonstrate the feasibility of conducting comprehensive assessments, including rigorous physiologic measurements, in a diverse population of older adults to study non-traditional risk factors for falls and disability. The MBS will provide an important new data resource for examining novel risk factors for falls and mobility problems in the older population.</p
Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology
We present a determination of the parton distributions of the nucleon from a
global set of hard scattering data using the NNPDF methodology including heavy
quark mass effects: NNPDF2.1. In comparison to the previous NNPDF2.0 parton
determination, the dataset is enlarged to include deep--inelastic charm
structure function data. We implement the FONLL-A general-mass scheme in the
FastKernel framework and assess its accuracy by comparison to the Les Houches
heavy quark benchmarks. We discuss the impact on parton distributions of the
treatment of the heavy quark masses, and we provide a determination of the
uncertainty in the parton distributions due to uncertainty in the masses. We
assess the impact of these uncertainties on LHC observables by providing parton
sets with different values of the charm and bottom quark masses. Finally, we
construct and discuss parton sets with a fixed number of flavours.Comment: 75 pages, 47 figures. Typos in Tab.2 (N_dat) and Eq.(70) correcte
Accelerometer-based physical activity in a large observational cohort - study protocol and design of the activity and function of the elderly in Ulm (ActiFE Ulm) study
<p>Abstract</p> <p>Background</p> <p>A large number of studies have demonstrated a positive effect of increased physical activity (PA) on various health outcomes. In all large geriatric studies, however, PA has only been assessed by interview-based instruments which are all subject to substantial bias. This may represent one reason why associations of PA with geriatric syndromes such as falls show controversial results. The general aim of the Active-Ulm study was to determine the association of accelerometer-based physical activity with different health-related parameters, and to study the influence of this standardized objective measure of physical activity on health- and disability-related parameters in a longitudinal setting.</p> <p>Methods</p> <p>We have set up an observational cohort study in 1500 community dwelling older persons (65 to 90 years) stratified by age and sex. Addresses have been obtained from the local residents registration offices. The study is carried out jointly with the IMCA - Respiratory Health Survey in the Elderly implemented in the context of the European project IMCA II. The study has a cross-sectional part (1) which focuses on PA and disability and two longitudinal parts (2) and (3). The primary information for part (2) is a prospective 1 year falls calendar including assessment of medication change. Part (3) will be performed about 36 months following baseline. Primary variables of interest include disability, PA, falls and cognitive function. Baseline recruitment has started in March 2009 and will be finished in April 2010.</p> <p>All participants are visited three times within one week, either at home or in the study center. Assessments included interviews on quality of life, diagnosed diseases, common risk factors as well as novel cognitive tests and established tests of physical functioning. PA is measured using an accelerometer-based sensor device, carried continuously over a one week period and accompanied by a prospective activity diary.</p> <p>Discussion</p> <p>The assessment of PA using a high standard accelerometer-based device is feasible in a large population-based study. The results obtained from cross-sectional and longitudinal analyses will shed light on important associations between PA and various outcomes and may provide information for specific interventions in older people.</p
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- …