1,245 research outputs found

    The ultimate outcome of black hole - neutron star mergers

    Full text link
    We present a simple, semi--analytical description for the final stages of mergers of black hole (BH) -- neutron star (NS) systems. Such systems are of much interest as gravitational wave sources and gamma--ray burst progenitors. Numerical studies show that in general the neutron star is not disrupted at the first phase of mass transfer. Instead, what remains of the neutron star is left on a wider, eccentric, orbit. We consider the evolution of such systems as they lose angular momentum via gravitational radiation and come into contact for further phases of mass transfer. During each mass transfer event the neutron star mass is reduced until a critical value where mass loss leads to a rapid increase in the stellar radius. At this point Roche lobe overflow shreds what remains of the neutron star, most of the mass forming a disc around the black hole. Such a disc may be massive enough to power a gamma--ray burst. The mass of the neutron star at the time of disruption (and therefore the disc mass) is largely independent of the initial masses of the black hole and neutron star, indicating that BH--NS star mergers may be standard candles.Comment: MNRAS, in pres

    Neutron star binaries and long duration gamma-ray bursts

    Get PDF
    Cosmological long-duration gamma-ray bursts (LGRBs) are thought to originate from the core collapse to black holes of stripped massive stars. Those with sufficient rotation form a centrifugally-supported torus whose collapse powers the GRB. We investigate the role of tidal locking within a tight binary as a source of the necessary angular momentum. We find that the binary orbit must be no wider than a few solar radii for a torus to form upon core collapse. Comparing this criterion to the observed population of binaries containing two compact objects suggests that rotation may have been important in the formation of up to 50% of the observed systems. As these systems created a neutron star and not a black hole they presumably did not produce highly luminous GRBs. We suggest instead that they make the subset of GRBs in the relatively local universe which have much lower luminosity.Comment: 7 pages, accepted for publication in MNRA

    Progenitors of Long Gamma-ray Bursts

    Full text link
    Pinpointing the progenitors of long duration gamma-ray bursts (LGRBs) remains an extremely important question, although it is now clear that at least a fraction of LGRBs originate in the core collapse of massive stars in type Ic supernovae, the pathways to the production of these stars, and their initial masses, remain uncertain. Rotation is thought to be vital in the creation of LGRBs, and it is likely that black hole creation is also necessary. We suggest that these two constraints can be met if the GRB progenitors are very massive stars (>20 solar masses) and are formed in tight binary systems. Using simple models we compare the predictions of this scenario with observations and find that the location of GRBs on their host galaxies are suggestive of main-sequence masses in excess of 20 solar masses, while 50% of the known compact binary systems may have been sufficiently close to have had the necessary rotation rates for GRB creation. Thus, massive stars in compact binaries are a likely channel for at least some fraction of LGRBs.Comment: To appear in "Gamma-ray bursts: Prospects for GLAST", AIP Conference proceedings 906, Editors M. Axelsson and F Ryd

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) Îł\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/Îł\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had iâ€Č∌22i^{\prime} \sim 22 (Mg∌−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∌20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∌\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA

    GRB 070201: A possible Soft Gamma Ray Repeater in M31

    Get PDF
    The gamma-ray burst (GRB) 070201 was a bright short-duration hard-spectrum GRB detected by the Inter-Planetary Network (IPN). Its error quadrilateral, which has an area of 0.124 sq. deg, intersects some prominent spiral arms of the nearby M31 (Andromeda) galaxy. Given the properties of this GRB, along with the fact that LIGO data argues against a compact binary merger origin in M31, this GRB is an excellent candidate for an extragalactic Soft Gamma-ray Repeater (SGR) giant flare, with energy of 1.4x10^45 erg. Analysis of ROTSE-IIIb visible light observations of M31, taken 10.6 hours after the burst and covering 42% of the GRB error region, did not reveal any optical transient down to a limiting magnitude of 17.1. We inspected archival and proprietary XMM-Newton X-ray observations of the intersection of the GRB error quadrilateral and M31, obtained about four weeks prior to the outburst, in order to look for periodic variable X-ray sources. No SGR or Anomalous X-ray Pulsar (AXP) candidates (periods in range 1 to 20 s) were detected. We discuss the possibility of detecting extragalactic SGRs/AXPs by identifying their periodic X-ray light curves. Our simulations suggest that the probability of detecting the periodic X-ray signal of one of the known Galactic SGRs/AXPs, if placed in M31, is about 10% (50%), using 50 ks (2 Ms) XMM-Newton exposures.Comment: 7 pages, submitted to ApJ (Fig. 2 resolution reduced

    The dark GRB080207 in an extremely red host and the implications for GRBs in highly obscured environments

    Get PDF
    [Abridged] We present comprehensive X-ray, optical, near- and mid-infrared, and sub-mm observations of GRB 080207 and its host galaxy. The afterglow was undetected in the optical and near-IR, implying an optical to X-ray index <0.3, identifying GRB 080207 as a dark burst. Swift X-ray observations show extreme absorption in the host, which is confirmed by the unusually large optical extinction found by modelling the X-ray to nIR afterglow spectral energy distribution. Our Chandra observations obtained 8 days post-burst allow us to place the afterglow on the sky to sub-arcsec accuracy, enabling us to pinpoint an extremely red galaxy (ERO). Follow-up host observations with HST, Spitzer, Gemini, Keck and the James Clerk Maxwell Telescope (JCMT) provide a photometric redshift solution of z ~1.74 (+0.05,-0.06) (1 sigma), 1.56 < z < 2.08 at 2 sigma) for the ERO host, and suggest that it is a massive and morphologically disturbed ultra-luminous infrared galaxy (ULIRG) system, with L_FIR ~ 2.4 x 10^12 L_solar. These results add to the growing evidence that GRBs originating in very red hosts always show some evidence of dust extinction in their afterglows (though the converse is not true -- some extinguished afterglows are found in blue hosts). This indicates that a poorly constrained fraction of GRBs occur in very dusty environments. By comparing the inferred stellar masses, and estimates of the gas phase metallicity in both GRB hosts and sub-mm galaxies we suggest that many GRB hosts, even at z>2 are at lower metallicity than the sub-mm galaxy population, offering a likely explanation for the dearth of sub-mm detected GRB hosts. However, we also show that the dark GRB hosts are systematically more massive than those hosting optically bright events, perhaps implying that previous host samples are severely biased by the exclusion of dark events.Comment: 13 pages, 6 figures, accepted for publication in MNRA

    The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution

    Get PDF
    We present multi-wavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the intermediate Palomar Transient Factory (iPTF) survey at redshift z=0.07897z=0.07897. The optical and ultraviolet (UV) light curves of the transient show a slow decay over five months, in agreement with previous optically discovered TDEs. It also has a comparable black-body peak luminosity of Lpeak≈1.5×1044L_{\rm{peak}} \approx 1.5 \times 10^{44} erg/s. The inferred temperature from the optical and UV data shows a value of (3−-5) ×104\times 10^4 K. The transient is not detected in X-rays up to LX<3×1042L_X < 3 \times 10^{42}erg/s within the first five months after discovery. The optical spectra exhibit two distinct broad emission lines in the He II region, and at later times also Hα\alpha emission. Additionally, emission from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column densities NH>1023N_{\rm{H}} > 10^{23} cm−2^{-2}. This optically thick gas would also explain the non-detection in soft X-rays. The profile of the absorption lines with the highest column density material at the largest velocity is opposite that of BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this proposal.Comment: 20 pages, 12 figures, published in Ap
    • 

    corecore