302 research outputs found

    Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Get PDF
    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future

    Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch

    Get PDF
    Factors were defined for elongation, rooting and acclimatization of micropropagated shoots of Larix x eurolepis Henry initiated from short shoot buds of plagiotropic stecklings serially propagated for 9 years from an 8-year-old tree. Initiation and multiplication were on Schenk and Hildebrandt (SH) medium supplemented with 5 μM 6-benzyladenine (BA) and 1 μM indole-butyric acid (IBA). Stem elongation was obtained in 36% of the shoots on SH medium containing 0.5 μM BA and 63% of the remaining non-elongated shoots initiated stem elongation after transfer on SH medium devoid of growth regulators. Rooting involved 2 steps: root induction on Campbell and Durzan mineral salts and Murashige and Skoog organic elements, both half-strength (CD-MS/2), supplemented with 1 μM of both naphthaleneacetic acid (NAA) and IBA, and root elongation following transfer to CD-MS/2 medium devoid of growth regulators. Repeating this 2-step sequence yielded up to 67% rooted shoots. Acclimatization of plantlets ranged from 83% to 100%. Over 300 plants were transferred to the greenhouse; some showed plagiotropic growth

    Influence of alternating temperature preculture on cryopreservation results for potato shoot tips

    Get PDF
    Cryopreservation is the most suitable long-term storage method for genetic resources of vegetatively maintained crops like potato. In the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) the DMSO droplet method is applied, and so far more than 1000 accessions are cryopreserved with an average regeneration rate of 58%. New experiments with four potato accessions using alternating temperatures (22/8°C day/night temperature, 8 h photoperiod, 7 d) prior to cryopreservation showed improved regeneration. The influence of this preculture on the shoot tips was studied for two wild, frost resistant species Solanum acaule and S. demissum and for two cultivated, frost sensitive potatoes S. tuberosum ‘Désirée’ and ‘King Edward’. Comparison of liquid and solid media after cryopreservation showed improved regeneration on solid media with higher regeneration percentages, less callus formation and better plantlet structure. In comparative analyses biochemical factors like soluble sugars, starch, and amino acid concentrations were measured. Shoot tips after constant and after alternating temperature preculture were analyzed. Total concentrations of soluble sugars (glucose, fructose, and sucrose) were higher for all accessions after the alternating temperature preculture, which could be the reason for improved cryopreservation results

    De novo domestication of wild tomato using genome editing

    Get PDF
    Breeding of crops over millennia for yield and productivity1 has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost2. We devised a CRISPR–Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants

    Transcriptional Analysis of Arabidopsis thaliana Response to Lima Bean Volatiles

    Get PDF
    Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However, the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce HIPVs are also unclear.Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire suite of Lima bean volatiles after 24 and 48 h.This study shows that the transcriptional responses of plants to HIPVs become stronger as treatment time increases and that ET signals are critical during this process

    Repeated exposure of jacket plum (Pappea capensis) micro-cuttings to indole-3-butyric acid (IBA) improved in vitro rooting capacity

    Get PDF
    The objective of the trial was to determine an effective propagation protocol for jacket plum (Pappea capensis) tree species. Experiments on in vitro propagation and rooting of stem cuttings were carried out. Dipping stem cuttings in half strength Murashige and Skoog (MS) media for 12 h prior to application of rooting hormones improved bud break and prolonged survival of stem cuttings on a mist bed. Early leaf loss was observed for stem cuttings planted without MS treatment. However, rooting was poor (11% for cuttings pre-treated in MS and 0% for those not pre-treated). For micro-propagation, significant differences (P < 0.05) in shoot multiplication and root regeneration were found. MS media supplemented with 2.0 mg l–1 benzylaminopurine was superior in the number of micro-shoots produced. Rooting capacity of micro-cuttings was improved from 42% to 64% when MS media supplemented with 0.5 mg l–1 IBA were repeated for the micro-cuttings that initially failed to root. There was 70% survival rate of plantlets after hardened off.The financial support from the Federal Ministry of Economic Cooperation (BMZ/GTZ), Germany through the World Agroforestry Centre (ICRAF) Southern Africa Regional Programme, Agro-Forest and Bio Energy Association and Invest North West, South Africa is acknowledged

    The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis

    Get PDF
    The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of ω-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid ω-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in ω-hydroxyacids with a chain length <C20, demonstrating that CYP86A1 functions as a hydroxylase of root suberized tissue. Detailed expression studies revealed a strong root specificity and a localized expression in the root endodermis. Transgenic expression of CYP86A1 fused to GFP distributed CYP86A1 to the endoplasmic reticulum, indicating that suberin monomer biosynthesis takes place in this sub-cellular compartment before intermediates are exported in the apoplast

    Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of AGAMOUS-LIKE36

    Get PDF
    Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin–specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin–dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds
    corecore