7,890 research outputs found

    Introduction to Library Trends 56 (1) Summer 2007: Preserving Cultural Heritage

    Get PDF
    published or submitted for publicatio

    Thermal momentum distribution from path integrals with shifted boundary conditions

    Full text link
    For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.Comment: 4 pages, 1 figure, minor revisions; version accepted in PR

    Surface Analysis of OFE-Copper X-Band Accelerating Structures and Possible Correlation to RF Breakdown Events

    Full text link
    X-band accelerator structures meeting the Next Linear Collider (NLC) design requirements have been found to suffer vacuum surface damage caused by radio frequency (RF) breakdown, when processed to high electric-field gradients. Improved understanding of these breakdown events is desirable for the development of structure designs, fabrication procedures, and processing techniques that minimize structure damage. RF reflected wave analysis and acoustic sensor pickup have provided breakdowns localization in RF structures. Particle contaminations found following clean autopsy of four RF-processed travelling wave structures, have been catalogued and analyzed. Their influence on RF breakdown, as well as that of several other material-based properties, will be discussed.Comment: 21 pages, 8 figures, 4 tables, Submitted to JVST A as a proceeding of the 50th AVS conference (Baltimore, MD, 2-7 Nov 2003

    Twist Deformations of the Supersymmetric Quantum Mechanics

    Get PDF
    The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde

    The solar wind disappearance event of 11 May 1999: source region evolution

    Full text link
    Context. A recent, detailed study of the well-known solar wind disappearance event of 11 May 1999 traced its origin to a coronal hole (CH) lying adjacent to a large active region (AR), AR8525 in Carrington rotation 1949. The AR was located at central meridian on 05 May 1999 when the flows responsible for this event began. We examine the evolution of the AR-CH complex during 5-6 May 1999 to study the changes that apparently played a key role in causing this disappearance event. Aims. To study the evolution of the solar source region of the disappearance event of 11 May 1999. Methods. Using images from the Soft X-ray Telescope (SXT), the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) to examine the evolution of the CH and AR complex at the source region of the disappearance event. Results. We find a dynamic evolution taking place in the CH-AR boundary at the source region of the disappearance event of 11 May 1999. This evolution, which is found to reduce the area of the CH, is accompanied by the formation of new loops in EUV images that are spatially and temporally correlated with emerging flux regions as seen in MDI data. Conclusions. In the period leading up to the disappearance event of 11 May 1999, our observations, during quiet solar conditions and in the absence of CMEs, provide the first clear evidence for Sun-Earth connection originating from an evolving AR-CH region located at central meridian. With the exception of corotating interacting regions (CIR), these observations provide the first link between the Sun and space weather effects at 1 AU, arising from non-explosive solar events.Comment: The paper has recently been accepted in A&A letters and this version is an 8 page article with 4 figure

    Unpacking changes in mangrove social-ecological systems: lessons from Brazil, Zanzibar, and Vietnam

    Get PDF
    Mangroves provide multiple benefits, from carbon storage and shoreline protection to food and energy for natural resource-dependent coastal communities. However, they are coming under increasing pressure from climate change, coastal development, and aquaculture. There is increasing need to better understand the changes mangroves face and whether these changes differ or are similar in different parts of the world. Using a multiple case study approach, focused on Vietnam, Zanzibar, and Brazil, this research analyzed the drivers, pressures, states, impacts, and responses (DPSIR) of mangrove systems. A qualitative content analysis was used on a purposively sampled document set for each country to identify and collate evidence under each of the DPSIR categories. Population growth and changing political and economic processes were key drivers across the three countries, leading to land use change and declining states of mangroves. This had an impact on the delivery of regulatory and provisioning ecosystem services from mangroves and on the welfare of coastal communities. Responses have been predominantly regulatory and aim to improve mangrove states, but without always considering ecosystem services or the consequences for welfare. The issue of scale emerged as a critical factor with drivers, pressures, impacts, and responses operating at different levels (from international to local), with consequences for response effectiveness

    Insight into the OH polarimetric structure of OH 26.5+0.6

    Full text link
    We present the first view of the magnetic field structure in the OH shell of the extreme OH/IR star OH 26.5+0.6. MERLIN interferometric observations of this object were obtained in December 1993 in full polarisation, at 1612, 1665 and 1667 MHz. The maser spots show a spheroidal distribution both at 1612 and 1667 MHz, while at 1665 MHz emission from the blue-shifted maser peak is concentrated on the stellar position, and the red-shifted peak emission exhibits a filamentary structure oriented on a SE-NW axis. The linear polarisation in both main lines is rather faint, ranging from 9 to 20% at 1665 MHz and from 0 to 30% at 1667 MHz. At 1612 MHz most maser spots exhibit a similar range of linear polarisation although those in the outermost parts of the envelope reach values as high as 66%. This is particularly apparent in the southern part of the shell. The detailed distribution of the polarisation vectors could only be obtained at 1612 MHz. The polarisation vectors show a highly structured distribution indicative of a poloidal magnetic field inclined by 40-60^\circ to the line of sight. The velocity distribution of the maser spots with respect to the radial distance is well explained by an isotropic outflow at constant velocity in the case of a prolate shaped spheroid envelope, also tilted about 45-65^\circ to the line of sight.Comment: 20 pages, 16 figures, accepted for publication in MNRA

    ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways.

    Get PDF
    Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia

    Major loss of coralline algal diversity in response to ocean acidification

    Get PDF
    Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity
    corecore