711 research outputs found

    Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations

    Full text link
    We present a practical and efficient means to compute the singular value decomposition (svd) of a quaternion matrix A based on bidiagonalization of A to a real bidiagonal matrix B using quaternionic Householder transformations. Computation of the svd of B using an existing subroutine library such as lapack provides the singular values of A. The singular vectors of A are obtained trivially from the product of the Householder transformations and the real singular vectors of B. We show in the paper that left and right quaternionic Householder transformations are different because of the noncommutative multiplication of quaternions and we present formulae for computing the Householder vector and matrix in each case

    Separate and Unequal Care in New York City

    Get PDF

    Rational invariants of even ternary forms under the orthogonal group

    Get PDF
    In this article we determine a generating set of rational invariants of minimal cardinality for the action of the orthogonal group O3\mathrm{O}_3 on the space R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} of ternary forms of even degree 2d2d. The construction relies on two key ingredients: On one hand, the Slice Lemma allows us to reduce the problem to dermining the invariants for the action on a subspace of the finite subgroup B3\mathrm{B}_3 of signed permutations. On the other hand, our construction relies in a fundamental way on specific bases of harmonic polynomials. These bases provide maps with prescribed B3\mathrm{B}_3-equivariance properties. Our explicit construction of these bases should be relevant well beyond the scope of this paper. The expression of the B3\mathrm{B}_3-invariants can then be given in a compact form as the composition of two equivariant maps. Instead of providing (cumbersome) explicit expressions for the O3\mathrm{O}_3-invariants, we provide efficient algorithms for their evaluation and rewriting. We also use the constructed B3\mathrm{B}_3-invariants to determine the O3\mathrm{O}_3-orbit locus and provide an algorithm for the inverse problem of finding an element in R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} with prescribed values for its invariants. These are the computational issues relevant in brain imaging.Comment: v3 Changes: Reworked presentation of Neuroimaging application, refinement of Definition 3.1. To appear in "Foundations of Computational Mathematics

    Approximating a Wavefunction as an Unconstrained Sum of Slater Determinants

    Full text link
    The wavefunction for the multiparticle Schr\"odinger equation is a function of many variables and satisfies an antisymmetry condition, so it is natural to approximate it as a sum of Slater determinants. Many current methods do so, but they impose additional structural constraints on the determinants, such as orthogonality between orbitals or an excitation pattern. We present a method without any such constraints, by which we hope to obtain much more efficient expansions, and insight into the inherent structure of the wavefunction. We use an integral formulation of the problem, a Green's function iteration, and a fitting procedure based on the computational paradigm of separated representations. The core procedure is the construction and solution of a matrix-integral system derived from antisymmetric inner products involving the potential operators. We show how to construct and solve this system with computational complexity competitive with current methods.Comment: 30 page

    Evidence for reversible control of magnetization in a ferromagnetic material via spin-orbit magnetic field

    Full text link
    Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, most commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.Comment: 10 pages including supplemental materia

    Stellar Content from high resolution galactic spectra via Maximum A Posteriori

    Full text link
    This paper describes STECMAP (STEllar Content via Maximum A Posteriori), a flexible, non-parametric inversion method for the interpretation of the integrated light spectra of galaxies, based on synthetic spectra of single stellar populations (SSPs). We focus on the recovery of a galaxy's star formation history and stellar age-metallicity relation. We use the high resolution SSPs produced by PEGASE-HR to quantify the informational content of the wavelength range 4000 - 6800 Angstroms. A detailed investigation of the properties of the corresponding simplified linear problem is performed using singular value decomposition. It turns out to be a powerful tool for explaining and predicting the behaviour of the inversion. We provide means of quantifying the fundamental limitations of the problem considering the intrinsic properties of the SSPs in the spectral range of interest, as well as the noise in these models and in the data. We performed a systematic simulation campaign and found that, when the time elapsed between two bursts of star formation is larger than 0.8 dex, the properties of each episode can be constrained with a precision of 0.04 dex in age and 0.02 dex in metallicity from high quality data (R=10 000, signal-to-noise ratio SNR=100 per pixel), not taking model errors into account. The described methods and error estimates will be useful in the design and in the analysis of extragalactic spectroscopic surveys.Comment: 31 pages, 23 figures, accepted for publication in MNRA

    A weakly overlapping domain decomposition preconditioner for the finite element solution of elliptic partial differential equations

    Get PDF
    We present a new two-level additive Schwarz domain decomposition preconditioner which is appropriate for use in the parallel finite element solution of elliptic partial differential equations (PDEs). As with most parallel domain decomposition methods each processor may be assigned one or more subdomains, and the preconditioner is such that the processors are able to solve their own subproblem(s) concurrently. The novel feature of the technique proposed here is that it requires just a single layer of overlap in the elements which make up each subdomain at each level of refinement, and it is shown that this amount of overlap is sufficient to yield an optimal preconditioner. Some numerical experiments-posed in both two and three space dimensions-are included to confirm that the condition number when using the new preconditioner is indeed independent of the level of mesh refinement on the test problems considered

    A domain decomposition preconditioner for a parallel finite element solver on distributed unstructured grids

    Get PDF
    A number of practical issues associated with the parallel distributed memory solution of elliptic partial differential equations (p.d.e.'s) using unstructured meshes in two dimensions are considered. The first part of the paper describes a parallel mesh generation algorithm which is designed both for efficiency and to produce a well-partitioned, distributed mesh, suitable for the efficient parallel solution of an elliptic p.d.e. The second part of the paper concentrates on parallel domain decomposition preconditioning for the linear algebra problems which arise when solving such a p.d.e. on the unstructured meshes that are generated. It is demonstrated that by allowing the mesh generator and the p.d.e. solver to share a certain coarse grid structure it is possible to obtain efficient parallel solutions to a number of large problems. Although the work is presented here in a finite element context, the issues of mesh generation and domain decomposition are not of course strictly dependent upon this particular discretization strategy

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report
    corecore