72 research outputs found

    Conformally rescaled spacetimes and Hawking radiation

    Full text link
    We study various derivations of Hawking radiation in conformally rescaled metrics. We focus on two important properties, the location of the horizon under a conformal transformation and its associated temperature. We find that the production of Hawking radiation cannot be associated in all cases to the trapping horizon because its location is not invariant under a conformal transformation. We also find evidence that the temperature of the Hawking radiation should transform simply under a conformal transformation, being invariant for asymptotic observers in the limit that the conformal transformation factor is unity at their location.Comment: 22 pages, version submitted to journa

    Flexor Hallucis Longus tendon rupture in RA-patients is associated with MTP 1 damage and pes planus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the prevalence of and relation between rupture or tenosynovitis of the Flexor Hallucis Longus (FHL) tendon and range of motion, deformities and joint damage of the forefoot in RA patients with foot complaints.</p> <p>Methods</p> <p>Thirty RA patients with painful feet were analysed, their feet were examined clinically for the presence of pes planus and range of motion (ROM), radiographs were scored looking for the presence of forefoot damage, and ultrasound examination was performed, examining the presence of tenosyovitis or rupture of the FHL at the level of the medial malleolus. The correlation between the presence or absence of the FHL and ROM, forefoot damage and pes planus was calculated.</p> <p>Results</p> <p>In 11/60(18%) of the feet, a rupture of the FHL was found. This was associated with a limited motion of the MTP1-joint, measured on the JAM (χ<sup>2 </sup>= 10.4, p = 0.034), a higher prevalence of pes planus (χ<sup>2 </sup>= 5.77, p = 0.016) and a higher prevalence of erosions proximal at the MTP-1 joint (χ<sup>2 </sup>= 12.3, p = 0.016), and joint space narrowing of the MTP1 joint (χ<sup>2 </sup>= 12.7, p = 0.013).</p> <p>Conclusion</p> <p>Rupture of the flexor hallucis longus tendon in RA-patients is associated with limited range of hallux motion, more erosions and joint space narrowing of the MTP-1-joint, as well as with pes planus.</p

    Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems

    Get PDF
    This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
    • …
    corecore