287 research outputs found

    The HRX-BL Lac sample - evolution of BL Lac objects

    Get PDF
    The unification of X-ray and radio selected BL Lacs has been an outstanding problem in the blazar research in the past years. Recent investigations have shown that the gap between the two classes can be filled with intermediate objects and that apparently all differences can be explained by mutual shifts of the peak frequencies of the synchrotron and inverse Compton component of the emission. We study the consequences of this scheme using a new sample of X-ray selected BL Lac objects comprising 104 objects with z<0.9 and a mean redshift z=0.34. 77 BL Lacs, of which the redshift could be determined for 64 (83%) objects, form a complete sample. The new data could not confirm our earlier result, drawn from a subsample, that the negative evolution vanishes below a synchrotron peak frequency log (peak-frequency) = 16.5. The complete sample shows negative evolution at the 2 sigma level ( = 0.42 +- 0.04). We conclude that the observed properties of the HRX BL Lac sample show typical behaviour for X-ray selected BL Lacs. They support an evolutionary model, in which flat-spectrum radio quasars (FSRQ) with high energetic jets evolve towards low frequency peaked (mostly radio-selected) BL Lac objects and later on to high frequency peaked (mostly X-ray selected) BL Lacs.Comment: 24 pages, 35 figures, accepted by A&

    Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target

    Get PDF
    A real-time PCR assay was designed to detect a 162-bp fragment of the ssrA gene in Listeria monocytogenes. The specificity of the assay for L. monocytogenes was confirmed against a panel of 6 Listeria species and 26 other bacterial species. A detection limit of 1-10 genome equivalents was determined for the assay. Application of the assay in natural and artificially contaminated culture enriched foods, including soft cheese, meat, milk, vegetables and fish, enabled detection of 1-5 CFU L. monocytogenes per 25g/ml of food sample in 30h. The performance of the assay was compared with the Roche Diagnostics 'LightCycler foodproof Listeria monocytogenes Detection Kit'. Both methods detected L. monocytogenes in all artificially contaminated retail samples (n=27) and L. monocytogenes was not detected by either system in 27 natural retail food samples. The method developed in this study has the potential to enable the specific detection of L. monocytogenes in a variety of food types in a time-frame considerably faster than current standard methods. The potential of the ssrA gene as a nucleic acid diagnostic (NAD) target has been demonstrated in L. monocytogenes. We are currently developing NAD tests based on the ssrA gene for a range of common foodborne and clinically relevant bacterial pathogens

    A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Get PDF
    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means

    Progress in human picornavirus research: New findings from the AIROPico consortium

    Get PDF
    Several research groups in Europe are active on different aspects of human picornavirus research. The AIROPico (Academia-Industry R&D Opportunities for Picornaviruses) consortium combined the disciplines of pathogenesis, diagnostics and therapy development in order to fill the gaps in our understanding of how picornaviruses cause human disease and how to combat them. AIROPico was the first EU consortium dedicated to human picornavirus research and development, and has largely accelerated and improved R&D on picornavirus biology, diagnostics and therapy. In this article, we present the progress on pathogenesis, diagnostics and treatment strategy developments for human picornaviruses resulting from the structured, translational research approach of the AIROPico consortium. We here summarize new insights in protection against infection by maternal or cross-protective antibodies, the visualisation of interactions between virus and neutralizing antibodies by cryoEM structural imaging, and the outcomes from a picornavirus-infected human 3D organoid. Progress in molecular detection and a fast typing assay for rhinovirus species are presented, as well as the identification of new compounds potentially interesting as therapeutic compounds.</p

    Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction

    Get PDF
    We present two real-time reverse-transcription polymerase chain reaction assays for a novel human coronavirus (CoV), targeting regions upstream of the E gene (upE) or within open reading frame (ORF)1b, respectively. Sensitivity for upE is 3.4 copies per reaction (95% confidence interval (CI): 2.5-6.9 copies) or 291 copies/mL of sample. No cross-reactivity was observed with coronaviruses OC43, NL63, 229E, SARS-CoV, nor with 92 clinical specimens containing common human respiratory viruses. We recommend using upE for screening and ORF1b for confirmation

    Simultaneous Planck, Swift, and Fermi observations of X-ray and gamma-ray selected blazars

    Get PDF
    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to ~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (\nupS) in the SED of FSRQs is the same in all the blazar samples with =10^13.1 Hz, while the mean inverse-Compton peak frequency, , ranges from 10^21 to 10^22 Hz. The distributions of \nupS and of \nupIC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs and strongly depend on the selection method. The Compton dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values >3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values ~1, thus implying that the assumption that the blazar power is dominated by high-energy emission is a selection effect. Simple SSC models cannot explain the SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and \nupS predicted by the blazar sequence.Comment: Version accepted by A&A. Joint Planck, Swift, and Fermi collaborations pape

    Processing DNA molecules as text

    Get PDF
    Polymerase Chain Reaction (PCR) is the DNA-equivalent of Gutenberg’s movable type printing, both allowing large-scale replication of a piece of text. De novo DNA synthesis is the DNA-equivalent of mechanical typesetting, both ease the setting of text for replication. What is the DNA-equivalent of the word processor? Biology labs engage daily in DNA processing—the creation of variations and combinations of existing DNA—using a plethora of manual labor-intensive methods such as site-directed mutagenesis, error-prone PCR, assembly PCR, overlap extension PCR, cleavage and ligation, homologous recombination, and others. So far no universal method for DNA processing has been proposed and, consequently, no engineering discipline that could eliminate this manual labor has emerged. Here we present a novel operation on DNA molecules, called Y, which joins two DNA fragments into one, and show that it provides a foundation for DNA processing as it can implement all basic text processing operations on DNA molecules including insert, delete, replace, cut and paste and copy and paste. In addition, complicated DNA processing tasks such as the creation of libraries of DNA variants, chimeras and extensions can be accomplished with DNA processing plans consisting of multiple Y operations, which can be executed automatically under computer control. The resulting DNA processing system, which incorporates our earlier work on recursive DNA composition and error correction, is the first demonstration of a unified approach to DNA synthesis, editing, and library construction

    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

    Get PDF
    BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks

    The influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness

    Full text link
    The atomic structure and physical properties of few-layered oriented diamond nanocrystals (diamanes), covered by hydrogen atoms from both sides are studied using electronic band structure calculations. It was shown that energy stability linear increases upon increasing of the thickness of proposed structures. All 2D carbon films display direct dielectric band gaps with nonlinear quantum confinement response upon the thickness. Elastic properties of diamanes reveal complex dependence upon increasing of the number of layers. All theoretical results were compared with available experimental data.Comment: 16 pages, 5 figures, 3 table

    [(18)F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy.

    Get PDF
    To compare the prognostic value of different anatomical and functional metabolic parameters determined using [(18)F]FDG-PET/CT with other clinical and pathological prognostic parameters in cervical cancer (CC). Thirty-eight patients treated with standard curative doses of chemo-radiotherapy (CRT) underwent pre- and post-therapy [(18)F]FDG-PET/CT. [(18)F]FDG-PET/CT parameters including mean tumor standardized uptake values (SUV), metabolic tumor volume (MTV) and tumor glycolytic volume (TGV) were measured before the start of CRT. The post-treatment tumor metabolic response was evaluated. These parameters were compared to other clinical prognostic factors. Survival curves were estimated by using the Kaplan-Meier method. Cox regression analysis was performed to determine the independent contribution of each prognostic factor. After 37 months of median follow-up (range, 12-106), overall survival (OS) was 71 % [95 % confidence interval (CI), 54-88], disease-free survival (DFS) 61 % [95 % CI, 44-78] and loco-regional control (LRC) 76 % [95 % CI, 62-90]. In univariate analyses the [(18)F]FDG-PET/CT parameters unfavorably influencing OS, DFS and LRC were pre-treatment TGV-cutoff ≥562 (37 vs. 76 %, p = 0.01; 33 vs. 70 %, p = 0.002; and 55 vs. 83 %, p = 0.005, respectively), mean pre-treatment tumor SUV cutoff ≥5 (57 vs. 86 %, p = 0.03; 36 vs. 88 %, p = 0.004; 65 vs. 88 %, p = 0.04, respectively) and a partial tumor metabolic response after treatment (9 vs. 29 %, p = 0.0008; 0 vs. 83 %, p &lt; 0.0001; 22 vs. 96 %, p &lt; 0.0001, respectively). After multivariate analyses a partial tumor metabolic response after treatment remained as an independent prognostic factor unfavorably influencing DFS and LRC (RR 1:7.7, p &lt; 0.0001, and RR 1:22.6, p = 0.0003, respectively) while the pre-treatment TGV-cutoff ≥562 negatively influenced OS and DFS (RR 1:2, p = 0.03, and RR 1:2.75, p = 0.05). Parameters capturing the pre-treatment glycolytic volume and metabolic activity of [(18)F]FDG-positive disease provide important prognostic information in patients with CC treated with CRT. The post-therapy [(18)F]FDG-PET/CT uptake (partial tumor metabolic response) is predictive of disease outcome
    corecore