367 research outputs found

    Plataforma de enseñanza de lenguajes de programación a través de Internet: Proyecto IDEFIX

    Get PDF
    En este artículo se describe la arquitectura del proyecto IDEFIX cuyo objetivo es desarrollar una plataforma que facilite la enseñanza de la programación en diferentes lenguajes mediante la utilización de Internet. El sistema permite la realización de prácticas de laboratorio mediante la creación de un entorno dinámico de desarrollo basado en Internet. En este entorno, los estudiantes tienen acceso a través de Internet a los enunciados de los ejercicios de programación escritos en un formato XML, que facilita la presentación en sistemas heterogéneos y que permite la posterior evaluación de forma automática. El sistema facilitará la realización interactiva de los ejercicios monitorizando los resultados parciales, fomentando el desarrollo colaborativo y facilitando la automatización del proceso de evaluación

    Chemical self-recognition in the lizard Liolaemus fitzgeraldi

    Get PDF
    Abstract Social-chemical recognition is exhibited by all the Liolaemus lizards tested to date, except Liolaemus fitzgeraldi, which during post-hibernation did not discriminate chemosignals of same-sex individuals from a control. To clarify if L. fitzgeraldi is unique among the studied Liolaemus in lacking social-chemical recognition or if this was previously undetected, we recorded behavior during pre-and post-hibernation when confronted with chemosignals of conspecifics and from themselves. L fitzgeraldi showed self-recognition and seasonal changes in two exploratory behaviors. Potentially, conspecific recognition in L fitzgeraldi was undetected due to seasonality, but this species may rely comparatively less on chemical communication than congeners

    Enamel Caries Detection and Diagnosis:An Analysis of Systematic Reviews

    Get PDF
    Detection and diagnosis of caries-typically undertaken through a visual-tactile examination, often with supporting radiographic investigations-is commonly regarded as being broadly effective at detecting caries that has progressed into dentine and reached a threshold where restoration is necessary. With earlier detection comes an opportunity to stabilize disease or even remineralize the tooth surface, maximizing retention of tooth tissue and preventing a lifelong cycle of restoration. We undertook a formal comparative analysis of the diagnostic accuracy of different technologies to detect and inform the diagnosis of early caries using published Cochrane systematic reviews. Forming the basis of our comparative analysis were 5 Cochrane diagnostic test accuracy systematic reviews evaluating fluorescence, visual or visual-tactile classification systems, imaging, transillumination and optical coherence tomography, and electrical conductance or impedance technologies. Acceptable reference standards included histology, operative exploration, or enhanced visual assessment (with or without tooth separation) as appropriate. We conducted 2 analyses based on study design: a fully within-study, within-person analysis and a network meta-analysis based on direct and indirect comparisons. Nineteen studies provided data for the fully within-person analysis and 64 studies for the network meta-analysis. Of the 5 technologies evaluated, the greatest pairwise differences were observed in summary sensitivity points for imaging and all other technologies, but summary specificity points were broadly similar. For both analyses, the wide 95% prediction intervals indicated the uncertainty of future diagnostic accuracy across all technologies. The certainty of evidence was low, downgraded for study limitations, inconsistency, and indirectness. Summary estimates of diagnostic accuracy for most technologies indicate that the degree of certitude with which a decision is made regarding the presence or absence of disease may be enhanced with the use of such devices. However, given the broad prediction intervals, it is challenging to predict their accuracy in any future "real world" context

    Bioprospecting on invasive plant species to prevent seed dispersal

    Get PDF
    The most anthropized regions of the world are characterized by an impressive abundance of invasive plants, which alter local biodiversity and ecosystem services. An alternative strategy to manage these species could be based on the exploitation of their fruits in a framework of bioprospecting to obtain high-added value compounds or phytocomplexes that are useful for humans. Here we tested this hypothesis on three invasive plants (Lonicera japonica Thunb., Phytolacca americana L., and Prunus serotina Ehrh.) in the Po plain (northern Italy) which bear fruits that are highly consumed by frugivorous birds and therefore dispersed over large distances. Our biochemical analyses revealed that unripe fruit shows high antioxidant properties due to the presence of several classes of polyphenols, which have a high benchmark value on the market. Fruit collection for phytochemical extraction could really prevent seed dispersal mediated by frugivorous animals and produce economic gains to support local management actions

    Impact of footwear and foot deformities in patients with Parkinson?s disease: A case-series study

    Get PDF
    Background: Parkinson's disease (PD) is a common and complex neurological problem. Gait abnormalities are frequent in PD patients, and this increases the risk of falls. However, little is known about foot deformities and footwear in this vulnerable population. Here we investigate whether patients with PD use an appropriate shoe size and know if they have foot deformities or alterations. Methodology: A study of a series of observational descriptive cases in a convenience sample (n = 53 patients) diagnosed with Parkinson's disease. One trained investigator evaluated foot and ankle health. The footwear and foot measurements were obtained using a Brannock device. Results: The podiatric examination and footwear examination detected a high presence of podiatric pathologies and inappropriate footwear. This has a negative impact on the quality of life of these patients. Conclusions: This research detected an elevated number of people with foot deformities or alterations. Moreover, a high proportion of participants with PD wear inadequate footwear (in length, width, or both)

    Sustainability perspectives of vigna unguiculata L. Walp. cultivation under no tillage and water stress conditions

    Get PDF
    Nowadays, agriculture is facing the great challenge of climate change which puts the productivity of the crops in peril due to unpredictable rain patterns and water shortages, especially in the developing world. Besides productivity, nutritional values of the yields of these crops may also be affected, especially under low mechanization and the low water availability conditions of the developing world. Conservation agriculture (CA) is a topic of emerging interest due to the provision of adequate yields and reduced environmental impact, such as greenhouse gas emissions, by being based on three main principles: minimum soil disturbance (reduced or no tillage), cover crop maintenance, and crop rotation. The aim of this study was to assess the impact of CA management on the growth performance and the nutritional profile of cowpea (Vigna unguiculata L. Walp), a pulse of African origin, commonly known as black eye bean under field conditions. A field experiment was designed to assess the effect of conventional tillage (CT) and no-tillage (NT) combined with the usage of a set of cover crops, coupled to normal and deficient water regimes. Cowpea was revealed to be able to grow and yield comparably at each level of the treatment tested, with a better ability to face water exhaustion under CA management. After a faster initial growth phase in CT plots, the level of adaptability of this legume to NT was such that growth performances improved significantly with respect to CT plots. The flowering rate was higher and earlier in CT conditions, while in NT it was slower but longer-lasting. The leafy photosynthetic rate and the nutritional profile of beans were slightly influenced by tillage management: only total starch content was negatively affected in NT and watered plots while proteins and aminoacids did not show any significant variation. Furthermore, significantly higher carbon and nitrogen concentration occurred in NT soils especially at the topmost (0\u20135 cm) soil horizon. These findings confirm the capability of CA to enrich soil superficial horizons and highlight that cowpea is a suitable crop to be grown under sustainable CA management. This practice could be pivotal to preserve soils and to save agronomical costs without losing a panel of nutrients that are important to the human diet. Due to its great protein and aminoacidic composition, V. unguiculata is a good candidate for further cultivation in regions of the word facing deficiencies in the intake of such nutrients, such as the Mediterranean basins and Sub-Saharan countries

    Vasomotion and Neurovascular Coupling in the Visual Thalamus In Vivo

    Get PDF
    Spontaneous contraction and relaxation of arteries (and in some instances venules) has been termed vasomotion and has been observed in an extensive variety of tissues and species. However, its functions and underlying mechanisms are still under discussion. We demonstrate that in vivo spectrophotometry, measured simultaneously with extracellular recordings at the same locations in the visual thalamus of the cat, reveals vasomotion, measured as an oscillation (0.14hz) in the recorded oxyhemoglobin (OxyHb) signal, which appears spontaneously in the microcirculation and can last for periods of hours. During some non-oscillatory periods, maintained sensory stimulation evokes vasomotion lasting ∼30s, resembling an adaptive vascular phenomenon. This oscillation in the oxyhaemoblobin signal is sensitive to pharmacological manipulation: it is inducible by chloralose anaesthesia and it can be temporarily blocked by systemic administration of adrenaline or acetylcholine (ACh). During these oscillatory periods, neurovascular coupling (i.e. the relationship between local neural activity and the rate of blood supply to that location) appears significantly altered. This raises important questions with regard to the interpretation of results from studies currently dependent upon a linear relationship between neural activity and blood flow, such as neuroimaging

    Combined impact of no-till and cover crops with or without short-term water stress as revealed by physicochemical and microbiological indicators

    Get PDF
    Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems’ resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes

    Macroevolutionary diversification of glands for chemical communication in squamate reptiles

    Get PDF
    Chemical communication plays a central role in social, sexual and ecological interactions among animals. However, the macroevolutionary diversification of traits responsible for chemical signaling remains fundamentally unknown. Most research investigating evolutionary diversification of glands responsible for the production of chemical signals has focused on arthropods, while its study among vertebrates remains neglected. Using a global-scale dataset covering > 80% (7,904 species) of the living diversity of lizards and snakes (squamates), we investigate rates, trajectories and phylogenetic patterns of diversification of their follicular glands for chemical communication. We observed these glands in 13.66% of species, that their expression has varying phylogenetic signal among lineages, and that the crown squamate ancestor lacked follicular glands, which therefore originated and diversified subsequently during their evolutionary history. Additionally, our findings challenge the longstanding view that within squamates the Iguania are visually oriented while Scleroglossa are chemically-oriented, given that Iguania doubles Scleroglossa in the frequency of glands. Our phylogenetic analyses identified stabilizing selection as the best model describing follicular gland diversification, and revealed high rates of disparity. We provide the first global-scale analysis investigating the diversification of one of the main forms of communication among reptiles, presenting a macroevolutionary angle to questions traditionally explored at microevolutionary scale
    corecore