243 research outputs found

    Evidence Of A Role For SNAP-25 As A v-SNARE In Vitro

    Get PDF

    The Autism-Spectrum Quotient in Siblings of People With Autism.

    Get PDF
    This study measures the distribution of autistic traits, using the autism-spectrum quotient (AQ), in siblings of individuals with autism spectrum conditions (ASC). Total AQ scores, along with AQ subscales, were collected from child, adolescent and adult controls, siblings, and volunteers with ASC using one of the three age-appropriate versions of the instrument: the AQ (adult self-report), the AQ-adolescent and AQ-child (both parent-reports). We examined the effect of Group (case, sibling and control) and AQ version (adult, adolescent and adult) on total and subscale scores. In addition, we tested for sex differences in all groups and on all versions. We found that in male and female adults, AQ scores in siblings fell between cases and controls (cases > siblings > controls). In children and adolescents, female siblings also scored higher than control females (female cases > female siblings > female controls), but there was no difference between male siblings and controls (male cases > male siblings = male controls). An investigation of subscale scores revealed that male siblings only differed from controls on the "Communication" subscale (male cases > male siblings > male controls), while female siblings differed from controls on all subscales except "Imagination" (female cases > female siblings > female controls). This study confirms the broader autism phenotype in siblings, and reveals this is modulated by sex and AQ version. Autism Res 2017, 10: 289-297. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/aur.165

    A multiorganism pipeline for antiseizure drug discovery:Identification of chlorothymol as a novel γ-aminobutyric acidergic anticonvulsant

    Get PDF
    OBJECTIVE:Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS:We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS:Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE:These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions

    Operation 'Cerberus Action' and the 'Four Corners' Prosecution.

    Get PDF
    There is a generally accepted belief that a well publicised prosecution, which results in the conviction of the offenders will deter crime by sending out a ‘clear message’ to those intending to offend. Those who seek to enforce the legal protection of antiquities and archaeological sites will often decry the number of prosecutions brought, and urge a more aggressive prosecution policy against looters and traffickers in antiquities. However a prosecution may not always produce the anticipated outcome of deterrence. In this article a lawyer examines a recent high profile operation undertaken by the Federal Bureau of Investigation and the Bureau of Land Management against looters and traffickers in the south west of the United States for breaches of the Archaeological Resources Protection Act of 1979 and its outcome. It will begin with a short consideration of the context in which the prosecutions were brought: the scale of looting in the area; the difficulties facing those who have to enforce the law; the legal and historical background, and the belief of many in the area that they have a right to dig for artefacts and to collect or sell them. It will then consider ‘Operation Cerberus Action’ and its consequences in some detail, drawing on contemporaneous newspaper accounts and blog comments to illustrate that a prosecution, even where it results in conviction of all the defendants, may be counterproductive, serving only to entrench existing attitudes rather than encouraging behavioural change in intending looters and traffickers

    Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis

    Get PDF
    Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content

    Genome-Wide Transcriptomic Analysis of Intestinal Tissue to Assess the Impact of Nutrition and a Secondary Nematode Challenge in Lactating Rats

    Get PDF
    Gastrointestinal nematode infection is a major challenge to the health and welfare of mammals. Although mammals eventually acquire immunity to nematodes, this breaks down around parturition, which renders periparturient mammals susceptible to re-infection and an infection source for their offspring. Nutrient supplementation reduces the extent of periparturient parasitism, but the underlying mechanisms remain unclear. Here, we use a genome wide approach to assess the effects of protein supplementation on gene expression in the small intestine of periparturient rats following nematode re-infection.The use of a rat whole genome expression microarray (Affymetrix Gene 1.0ST) showed significant differential regulation of 91 genes in the small intestine of lactating rats, re-infected with Nippostrongylus brasiliensis compared to controls; affected functions included immune cell trafficking, cell-mediated responses and antigen presentation. Genes with a previously described role in immune response to nematodes, such as mast cell proteases, and intelectin, and others newly associated with nematode expulsion, such as anterior gradient homolog 2 were identified. Protein supplementation resulted in significant differential regulation of 64 genes; affected functions included protein synthesis, cellular function and maintenance. It increased cell metabolism, evident from the high number of non-coding RNA and the increased synthesis of ribosomal proteins. It regulated immune responses, through T-cell activation and proliferation. The up-regulation of transcription factor forkhead box P1 in unsupplemented, parasitised hosts may be indicative of a delayed immune response in these animals.This study provides the first evidence for nutritional regulation of genes related to immunity to nematodes at the site of parasitism, during expulsion. Additionally it reveals genes induced following secondary parasite challenge in lactating mammals, not previously associated with parasite expulsion. This work is a first step towards defining disease predisposition, identifying markers for nutritional imbalance and developing sustainable measures for parasite control in domestic mammals

    Judgment of Learning Accuracy in High-functioning Adolescents and Adults with Autism Spectrum Disorder

    Get PDF
    This study explored whether adults and adolescents with autism spectrum disorder (ASD) demonstrate difficulties making metacognitive judgments, specifically judgments of learning. Across two experiments, the study examined whether individuals with ASD could accurately judge whether they had learnt a piece of information (in this case word pairs). In Experiment 1, adults with ASD demonstrated typical accuracy on a standard ‘cue-alone’ judgment of learning (JOL) task, compared to age- and IQmatched neurotypical adults. Additionally, in Experiment 2, adolescents with ASD demonstrated typical accuracy on both a standard ‘cue-alone’ JOL task, and a ‘cue-target’ JOL task. These results suggest that JOL accuracy is unimpaired in ASD. These results have important implications for both theories of metacognition in ASD and educational practise

    Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans

    Get PDF
    Background: Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding,35uC and also senses changes in its environmental temperature in the range between 15 and 25uC. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings: We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicinsensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance: Our results identify distinct thermal responses mediated by a single neuron, but also show tha

    Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    Get PDF
    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly a-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58 degrees C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70 degrees C. Conclusion/Significance: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications
    corecore