16 research outputs found

    The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling

    Get PDF
    The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc

    Multiple conformations of PEVK proteins detected by single-molecule techniques

    No full text
    An important component of muscle elasticity is the PEVK region of titin, so named because of the preponderance of these amino acids. However, the PEVK region, similar to other elastomeric proteins, is thought to form a random coil and therefore its structure cannot be determined by standard techniques. Here we combine single-molecule electron microscopy and atomic force microscopy to examine the conformations of the human cardiac titin PEVK region. In contrast to a simple random coil, we have found that cardiac PEVK shows a wide range of elastic conformations with end-to-end distances ranging from 9 to 24 nm and persistence lengths from 0.4 to 2.5 nm. Individual PEVK molecules retained their distinctive elastic conformations through many stretch-relaxation cycles, consistent with the view that these PEVK conformers cannot be interconverted by force. The multiple elastic conformations of cardiac PEVK may result from varying degrees of proline isomerization. The single-molecule techniques demonstrated here may help elucidate the conformation of other proteins that lack a well-defined structure

    Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents

    No full text
    The cellular function of the giant protein titin in striated muscle is a major focus of scientific attention. Particularly, its role in passive mechanics has been extensively investigated. In strong contrast, the structural details of this filament are very poorly understood. To date, only a handful of atomic models from single domain components have become available and data on poly-constructs are limited to scarce SAXS analyses. In this study, we examine the molecular parameters of poly-Ig tandems from I-band titin relevant to muscle elasticity. We revisit conservation patterns in domain and linker sequences of I-band modules and interpret these in the light of available atomic structures of Ig domains from muscle proteins. The emphasis is placed on features expected to affect inter-domain arrangements. We examine the overall conformation of a 6Ig fragment, I65-I70, from the skeletal I-band of soleus titin using SAXS and electron microscopy approaches. The possible effect of highly conserved glutamate groups at the linkers as well as the ionic strength of the medium on the overall molecular parameters of this sample is investigated. Our findings indicate that poly-Ig tandems from I-band titin tend to adopt extended arrangements with low or moderate intrinsic flexibility, independently of the specific features of linkers or component Ig domains across constitutively- and differentially-expressed tandems. Linkers do not appear to operate as free hinges so that lateral association of Ig domains must occur infrequently in samples in solution, even that inter-domain sequences of 4-5 residues length would well accommodate such geometry. It can be expected that this principle is generally applicable to all Ig-tandems from I-band titin

    Alignment of a conjugated polymer onto amyloid-like protein fibrils

    No full text
    The amyloid-like fibril is a biomolecular nanowire template of very high stability. Here we describe the coordination of a conjugated polyelectrolyte, poly(thiophene acetic acid) (PTAA), to bovine insulin fibrils with widths of < 10 nm and lengths of up to more than 10 mu m. Fibrils complexed with PTAA are aligned on surfaces through molecular combing and transfer printing. Single-molecule spectroscopy techniques are applied to chart spectral variation in the emission of these wires. When these results are combined with analysis of the polarization of the emitted light, we can conclude that the polymer chains are preferentially aligned along the fibrillar axis

    Nucleotide-Dependent Shape Changes in the Reverse Direction Motor, Myosin VI

    No full text
    We have studied the shape of myosin VI, the actin minus-end directed motor, by negative stain and metal shadow electron microscopy. Single particle processing was used to make two-dimensional averages of the stain images, which greatly increases the clarity and allows detailed comparisons with crystal structures. A total of 169,964 particle images were obtained from two different constructs in six different states (four nucleotide states and with and without Ca2+). The shape of truncated apo myosin VI was very similar to the apo crystal structure, with the lever arm bent strongly backward and around the motor domain. In the full-length molecule, the C-terminal part of the tail has an additional bend taking it back across the motor domain, which may reflect a regulated state. Addition of ATP, ADP, or ATP-γS resulted in a large change, straightening the molecule from the bent shape and swinging the lever by ∼140°. Although these nucleotides would not be expected to produce the pre-powerstroke state, myosin VI in their presence was most similar to the truncated crystal structure with bound ADP-VO4, which is thought to show the pre-powerstroke shape. The nucleotide data were therefore substantially different from expectation based on crystal structures. The full-length molecule was almost completely monomeric; only ∼1% were dimers, joined through the ends of the tail. Addition of calcium ions appeared to result in release of the second calmodulin light chain. In negatively stained molecules there was little indication of extended α-helical structure in the tail, but molecules viewed by metal shadowing had a tail ∼3× longer, 29 vs. 9 nm, part of which is likely to be a single α-helix

    Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease

    No full text
    Remodeling is a stringently controlled process that enables adequate response of muscle cells to constant physical stresses. In this process, different kinds of stimuli have to be sensed and converted into biochemical signals that ultimately lead to alterations of muscle phenotype. Several multiprotein complexes located in the sarcomere and organized on the titin molecular spring have been identified as stress sensors and signal transducers. In this review, we focus on Ankrd1/CARP and Ankrd2/Arpp proteins, which belong to the muscle ankyrin repeat protein family (MARP) involved in a mechano-signaling pathway that links myofibrillar stress response to muscle gene expression. Apart from the mechanosensory function, they have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. Their altered expression has been demonstrated in neuromuscular disorders, cardiovascular diseases, as well as in tumors, suggesting a role in pathological processes. Although analyzed in a limited number of patients, there is a considerable body of evidence that MARP proteins could be suitable candidates for prognostic and diagnostic biomarkers
    corecore