65 research outputs found

    The regularization of Old English weak verbs

    Get PDF
    [EN] This article deals with the regularization of non-standard spellings of the verbal forms extracted from a corpus. It addresses the question of what the limits of regularization are when lemmatizing Old English weak verbs. The purpose of such regularization, also known as normalization, is to carry out lexicological analysis or lexicographical work. The analysis concentrates on weak verbs from the second class and draws on the lexical database of Old English Nerthus, which has incorporated the texts of the Dictionary of Old English Corpus. As regards the question of the limits of normalization, the solution adopted are, in the first place, that when it is necessary to regularize, normalization is restricted to correspondences based on dialectal and diachronic variation and, secondly, that normalization has to be unidirectional.This research has been funded through the project FFI2011-29532.Tío Sáenz, M. (2015). The regularization of Old English weak verbs. Revista de Lingüística y Lenguas Aplicadas. 10:78-89. https://doi.org/10.4995/rlyla.2015.3583SWORD78891

    Effects of mannoprotein E1 in liquid diet on inflammatory response and TLR5 expression in the gut of rats infected by Salmonella typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannoproteins are yeast cell wall componend, and rich in mannose. The use of foods rich in mannose as carbohydrate, could have a bioprotective effect against entrobacteria intestinal infection. Nothing is known about mannoproteins' activity in inflammatory bowel processes induced by entrobacteria.</p> <p>This study investigates the effects of mannoprotein administration via a liquid diet on inflammatory response and TLR5 expression during intestinal tissue injury in a rat model of infection with <it>Salmonella typhimurium</it>.</p> <p>Methods</p> <p>Adult Wistar male rats were divided into three groups: control, and mannoprotein E<sub>1 </sub>at 10 or 15%. Animals were fed with a liquid diet supplemented or not with mannoprotein E<sub>1</sub>. Groups were infected by intragastrical administration of <it>S. typhimurium</it>. 24 h post-inoculation samples of spleen, ileum and liver were collected for microbiological studies. Gut samples were processed to determine levels of proinflammatory cytokines (mRNA) and TLR5 (mRNA and protein) by quantitative PCR and Western-blot, and the number of proliferative and apoptotic cells determined by immunohistochemistry.</p> <p>Results</p> <p>Ininfected levels of proinflammatory cytokines and TLR5 were higher in untreated controls than in the animals receiving mannoprotein. Proliferation was similar in both groups, whereas apoptosis was higher in controls. Curiosly, the mannoprotein effect was dose dependent.</p> <p>Conclusions</p> <p>Mannoprotein administration in a liquid diet seems to protect intestinal tissue against <it>S. typhimurium </it>infection. This protection seems to expressed as a lower pro-inflammatory response and TLR5 downregulation in gut epithelium, as well as by an inhibition of apoptosis. Nevertheless, the molecular mechanism by which mannoprotein is able to regulate these responses remain unclear. These results could open up new avenues in the use of mannoproteins as prebiotics in the therapeutic strategy for treatment of inflammatory gut processes induced by microbia.</p

    Enhanced Immunogenicity, Mortality Protection, and Reduced Viral Brain Invasion by Alum Adjuvant with an H5N1 Split-Virion Vaccine in the Ferret

    Get PDF
    Pre-pandemic development of an inactivated, split-virion avian influenza vaccine is challenged by the lack of pre-existing immunity and the reduced immunogenicity of some H5 hemagglutinins compared to that of seasonal influenza vaccines. Identification of an acceptable effective adjuvant is needed to improve immunogenicity of a split-virion avian influenza vaccine.No serum antibodies were detected after vaccination with unadjuvanted vaccine, whereas alum-adjuvanted vaccination induced a robust antibody response. Survival after unadjuvanted dose regimens of 30 µg, 7.5 µg and 1.9 µg (21-day intervals) was 64%, 43%, and 43%, respectively, yet survivors experienced weight loss, fever and thrombocytopenia. Survival after unadjuvanted dose regimen of 22.5 µg (28-day intervals) was 0%, suggesting important differences in intervals in this model. In contrast to unadjuvanted survivors, either dose of alum-adjuvanted vaccine resulted in 93% survival with minimal morbidity and without fever or weight loss. The rarity of brain inflammation in alum-adjuvanted survivors, compared to high levels in unadjuvanted vaccine survivors, suggested that improved protection associated with the alum adjuvant was due to markedly reduced early viral invasion of the ferret brain.Alum adjuvant significantly improves efficacy of an H5N1 split-virion vaccine in the ferret model as measured by immunogenicity, mortality, morbidity, and brain invasion

    Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82

    Get PDF
    International audienceBACKGROUND: Ileal lesions of Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells and macrophages. PRINCIPAL FINDINGS: We report here the complete genome sequence of E. coli LF82, the reference strain of adherent-invasive E. coli associated with ileal Crohn's disease. The LF82 genome of 4,881,487 bp total size contains a circular chromosome with a size of 4,773,108 bp and a plasmid of 108,379 bp. The analysis of predicted coding sequences (CDSs) within the LF82 flexible genome indicated that this genome is close to the avian pathogenic strain APEC_01, meningitis-associated strain S88 and urinary-isolated strain UTI89 with regards to flexible genome and single nucleotide polymorphisms in various virulence factors. Interestingly, we observed that strains LF82 and UTI89 adhered at a similar level to Intestine-407 cells and that like LF82, APEC_01 and UTI89 were highly invasive. However, A1EC strain LF82 had an intermediate killer phenotype compared to APEC-01 and UTI89 and the LF82 genome does not harbour most of specific virulence genes from ExPEC. LF82 genome has evolved from those of ExPEC B2 strains by the acquisition of Salmonella and Yersinia isolated or clustered genes or CDSs located on pLF82 plasmid and at various loci on the chromosome. CONCLUSION: LF82 genome analysis indicated that a number of genes, gene clusters and pathoadaptative mutations which have been acquired may play a role in virulence of AIEC strain LF82

    Demonstration of Interoperability Between MIDRC and N3C: A COVID-19 Severity Prediction Use Case

    Get PDF
    Interoperability between data sources, one of the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management, can enable multi-modality research. The purpose of our study was to investigate the potential for interoperability between an imaging resource, the Medical Imaging and Data Resource Center (MIDRC), and a clinical record resource, the National COVID Cohort Collaborative (N3C). The use case was the prediction of COVID-19 severity, defined as evidence for invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice in the N3C clinical record. Patient-level matching between MIDRC and N3C was identified using Privacy Preserving Record Linking via an honest broker. We identified positive COVID-19 tests and chest radiograph procedures in N3C and used the interval between them to identify images with matching intervals in MIDRC. Of the 236 patients (306 unique images) meeting initial inclusion criteria in MIDRC, 117 patients (and 139 unique images) remained after date interval matching between repositories and exclusion of patients with multiple potential matches. The Charlson Comorbidity Index (CCI) and the minimum mean arterial pressure (MAP) on the day of the chest radiograph were used as clinical indicators. The AUC in the task of predicting severe COVID-19 was evaluated using the computer-extracted imaging index alone (MIDRC), clinical indicators alone (N3C), and both together. Our model combining imaging and clinical indicators (CCI over 2 and MAP below 70) to predict severe COVID had an AUC of 0.73 (95% CI 0.62–0.84), and the models including imaging or clinical indicators alone were 0.67 (95% CI 0.56–0.79) and 0.69 (95% CI 0.59–0.80), respectively. This study highlights the potential for cross-platform data sharing to facilitate future multi-modality research and broader collaborative studies

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved

    Bacterial Flagella: Twist and Stick, or Dodge across the Kingdoms

    Get PDF
    The flagellum organelle is an intricate multiprotein assembly best known for its rotational propulsion of bacteria. However, recent studies have expanded our knowledge of other functions in pathogenic contexts, particularly adherence and immune modulation, e.g., for Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa, and Escherichia coli. Flagella-mediated adherence is important in host colonisation for several plant and animal pathogens, but the specific interactions that promote flagella binding to such diverse host tissues has remained elusive. Recent work has shown that the organelles act like probes that find favourable surface topologies to initiate binding. An emerging theme is that more general properties, such as ionic charge of repetitive binding epitopes and rotational force, allow interactions with plasma membrane components. At the same time, flagellin monomers are important inducers of plant and animal innate immunity: variation in their recognition impacts the course and outcome of infections in hosts from both kingdoms. Bacteria have evolved different strategies to evade or even promote this specific recognition, with some important differences shown for phytopathogens. These studies have provided a wider appreciation of the functions of bacterial flagella in the context of both plant and animal reservoirs

    Reproductive health care policies around the world

    No full text
    corecore