351 research outputs found

    Prognostic Value of N-terminal B-type Natriuretic Peptide in Patients with Acute Myocardial Infarction: A Multicenter Study

    Get PDF
    Background: Several models have been developed to help the clinician in risk stratification for Acute Coronary Syndrome (ACS),such as the TIMI and GRACE risk scores. However, there is conflicting evidence for the prognostic value of NT-ProBNP in acute myocardial infarction (AMI). Objective: (1) To explore the association of NT-proBNP with 30-day clinical outcome in AMI patients. (2) To compare the prognostic value of NT-proBNP with TIMI and GRACE risk scores in AMI patients. Methods: We conducted a multicenter, prospective observational study recruiting patients presented with AMI between 29-October-2015 and 14-January-2017, involving 1 cardiology referral centre and 4 non-cardiology hospitals. NT-proBNP level (Alere Triage®, US)was measured within 24 hours fromthe diagnosis of AMI. Patientswere followed-up for 1 month. Results: A total of 186 patients were recruited, 143 from tertiary cardiology centre and 43 from non-cardiology hospitals. Mean age was 54.7±10.0 years, 87.6% male and 64% were STEMI. The NT-proBNP level ranged from 60 to 16700pg/ml, with a median of 714pg/ml. Using the 75th centile as the cutoff, Kaplan-Meier survival analysis for the 30-day cardiac related mortality was significantly higher for patient with NT-proBNP level of ≥1600pg/ml (6.4% vs. 0.7%, p=0.02). Cox-regression analysis showed that NT-proBNP level of ≥1600pg/ml was an independent predictor of 30-day cardiac related mortality, regardless of TIMI risk score, GRACE score, LV ejection fraction and study hospitals (HR 9.274, p=0.054, 95%CI 0.965, 89.161). Readmission for heart failure at 30-day was also higher for patient with NT-proBNP level of ≥1600pg/ml (HR 9.308, p=0.053, 95%CI 0.969, 89.492). NT-proBNP level was not associated with all-cause mortality, risk of readmission for ACS, arrhythmia and stroke (pN0.05). By adding 50 score to GRACE risk score for NT-proBNP level of ≥1600pg/ml, combination of GraceNT-proBNP scores of more than 200 appeared to be a better independent predictor for 30-day cardiac related mortality (HR:28.28, p=0.004, 95%CI 2.94, 272.1). ROC analysis showed that this new score had 75% sensitivity and 91.2% specificity in predicting 30-day cardiac related mortality (AUC 0.791, p=0.046). Conclusions: NT-proBNP is a useful point-of-care risk stratification biomarker in AMI. It can be combined to the current risk score model for better risk stratification in AMI patients

    Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes

    Get PDF
    It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin’s role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let

    High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe

    Full text link
    We report on the realization of a high quality distributed Bragg reflector with both high and low refractive index layers lattice matched to ZnTe. Our structure is grown by molecular beam epitaxy and is based on binary compounds only. The high refractive index layer is made of ZnTe, while the low index material is made of a short period triple superlattice containing MgSe, MgTe, and ZnTe. The high refractive index step of Delta_n=0.5 in the structure results in a broad stopband and the reflectivity coefficient exceeding 99% for only 15 Bragg pairs.Comment: 4 pages, 3 figure

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at TcT_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TNT_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
    corecore