9,135 research outputs found

    An HST/WFC3-UVIS View of the Starburst in the Cool Core of the Phoenix Cluster

    Full text link
    We present Hubble Space Telescope Wide Field Camera 3 observations of the core of the Phoenix Cluster SPT-CLJ2344-4243 in five broadband filters spanning rest-frame 1000--5500A. These observations reveal complex, filamentary blue emission, extending for >40kpc from the brightest cluster galaxy. We observe an underlying, diffuse population of old stars, following an r^1/4 distribution, confirming that this system is somewhat relaxed. The spectral energy distribution in the inner part of the galaxy, as well as along the extended filaments, is a smooth continuum and is consistent with that of a star-forming galaxy, suggesting that the extended, filamentary emission is not due to the central AGN, either from a large-scale ionized outflow or scattered polarized UV emission, but rather a massive population of young stars. We estimate an extinction-corrected star formation rate of 798 +/- 42 Msun/yr, consistent with our earlier work based on low spatial resolution ultraviolet, optical, and infrared imaging. The lack of tidal features and multiple bulges, combine with the need for an exceptionally massive (>10^11 Msun) cold gas reservoir, suggest that this star formation is not the result of a merger of gas-rich galaxies. Instead, we propose that the high X-ray cooling rate of ~2700 Msun/yr is the origin of the cold gas reservoir. The combination of such a high cooling rate and the relatively weak radio source in the cluster core suggests that feedback has been unable to halt cooling in this system, leading to this tremendous burst of star formation.Comment: 7 pages, 5 figures, accepted for publication in ApJ Letter

    Neurophysiology

    Get PDF
    Contains reports on four research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grants MH-04737-03 and NB-04985-01)United States Air Force, Aeronautical Systems Division (Contract AF33(616)-7783)United States Air Force (Contract AF19(604)-6619), administered by Montana State CollegeNational Aeronautics and Space Administration (Grant NsG-496)Teagle Foundation, IncorporatedBell Telephone Laboratories, Incorporate

    Temporal variability and statistics of the Strehl ratio in adaptive-optics images

    Full text link
    We have investigated the temporal variability and statistics of the "instantaneous" Strehl ratio. The observations were carried out with the 3.63-m AEOS telescope equipped with a high-order adaptive optics system. In this paper Strehl ratio is defined as the peak intensity of a single short exposure. We have also studied the behaviour of the phase variance computed on the reconstructed wavefronts. We tested the Marechal approximation and used it to explain the observed negative skewness of the Strehl ratio distribution. The estimate of the phase variance is shown to fit a three-parameter Gamma distribution model. We show that simple scaling of the reconstructed wavefronts has a large impact on the shape of the Strehl ratio distribution.Comment: submitted to PAS

    Registration of hard white winter wheat germplasms KS14U6380R5, KS16U6380R10, and KS16U6380R11 with adult plant resistance to stem rust

    Get PDF
    Resistance to the Ug99 group of races of the stem rust fungus Puccinia graminis f. sp. tritici is limited in winter wheat (Triticum aestivum L.) germplasm adapted to the Great Plains of the United States. Our objective was to generate regionally adapted hard winter wheat germplasm with combinations of adult plant resistance genes that are expected to provide durable resistance. KS14U6380R5 (Reg. no. GP-1043, PI 689115), KS16U6380R10 (Reg. no. GP-1044, PI 689116), and KS16U6380R11 (Reg. no. GP-1045, PI 689117) were derived from backcrosses of the hard white winter wheat germplasm KS05HW14 to the stem rust-resistant Kenyan spring wheat cultivar ‘Kingbird’. KS14U6380R5, KS16U6380R11, and KS16U6380R10 were developed by pedigree selection and were initially evaluated as U6380-11-2R-0A, U6380-210-2R-0A, and U6380-148-4R-2T, respectively. The germplasms were developed by the USDA-ARS and jointly released with the Kansas State University Agricultural Experiment Station. These germplasms provide parents for development of hard winter wheat cultivars with durable resistance to stem rust

    CSNL: A cost-sensitive non-linear decision tree algorithm

    Get PDF
    This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification. The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes. The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes

    Observations of Arp 220 using Herschel-SPIRE: An Unprecedented View of the Molecular Gas in an Extreme Star Formation Environment

    Get PDF
    We present Herschel SPIRE-FTS observations of Arp~220, a nearby ULIRG. The FTS continuously covers 190 -- 670 microns, providing a good measurement of the continuum and detection of several molecular and atomic species. We detect luminous CO (J = 4-3 to 13-12) and water ladders with comparable total luminosity; very high-J HCN absorption; OH+, H2O+, and HF in absorption; and CI and NII. Modeling of the continuum yields warm dust, with T = 66 K, and an unusually large optical depth of ~5 at 100 microns. Non-LTE modeling of the CO shows two temperature components: cold molecular gas at T ~ 50 K and warm molecular gas at T ~1350 K. The mass of the warm gas is 10% of the cold gas, but dominates the luminosity of the CO ladder. The temperature of the warm gas is in excellent agreement with H2 rotational lines. At 1350 K, H2 dominates the cooling (~20 L_sun/M_sun) in the ISM compared to CO (~0.4 L_sun/M_sun). We found that only a non-ionizing source such as the mechanical energy from supernovae and stellar winds can excite the warm gas and satisfy the energy budget of ~20 L_sun/M_sun. We detect a massive molecular outflow in Arp 220 from the analysis of strong P-Cygni line profiles observed in OH+, H2O+, and H2O. The outflow has a mass > 10^{7} M_sun and is bound to the nuclei with velocity < 250 km/s. The large column densities observed for these molecular ions strongly favor the existence of an X-ray luminous AGN (10^{44} ergs/s) in Arp 220.Comment: Accepted in ApJ on September 1, 201

    Failure Mode Analysis of the Endologix Endograft

    Get PDF
    Objective Type III (T-III) endoleaks following endovascular aneurysm repair (EVAR) remain a major concern. Our center experienced a recent concentration of T-III endoleaks requiring elective and emergency treatment and prompted our review of all EVAR implants over a 40-month period from April 2011 until August 2014. This report represents a single center experience with T-III endoleak management with analysis of factors leading to the T-III-related failure of EVAR. Methods A retrospective review of all the operative reports, medical records, and computed tomography scans were reviewed from practice surveillance. Using Society for Vascular Surgery aneurysm reporting standards, we analyzed the morphology of the aneurysms before and after EVAR implant using computed tomography. Index procedure and frequency of reinterventions required to maintain aneurysm freedom from rupture were compared across all devices using SAS v 9.4 (SAS Institute, Inc, Cary, NC). Major adverse events (MAEs) requiring secondary interventions for aneurysm treatment beyond primary implant were analyzed for methods of failure. Aneurysm morphology of patients requiring EVAR was compared across all endograft devices used for repair. For purposes of MAE analysis, patients receiving Endologix (ELX) endograft were combined into group 1; Gore, Cook, and Medtronic endograft patients were placed into group 2. Results Overall, technical success and discharge survival were achieved in 97.3% and 98% of patients regardless of device usage. There was no significant device related difference identified between patient survival or freedom from intervention. MAEs involving aneurysm treatment were over seven-fold more frequent with ELX (group 1) vs non-ELX (group 2) endografts (P < .01). Group 1 patients with aneurysm diameters larger than 65 mm were associated with a highly significant value for development of a T-III endoleak (odds ratio, 11.16; 95% confidence interval, 2.17, 57.27; P = .0038). Conclusions While EVAR technical success and survival were similar across all devices, ELX devices exhibited an unusually high incidence of T-III endoleaks when implanted in abdominal aortic aneurysms with a diameter of more than 65 mm. Frequent reinterventions were required for Endologix devices for prevention of aneurysm rupture due to T-III endoleaks

    Patterns of depredation in the Hawai‘i deep-set longline fishery informed by fishery and false killer whale behavior

    Get PDF
    False killer whales (Pseudorca crassidens) depredate bait and catch in the Hawai‘i-based deep-set longline fishery, and as a result, this species is hooked or entangled more than any other cetacean in this fishery. We analyzed data collected by fisheries observers and from satellite-linked transmitters deployed on false killer whales to identify patterns of odontocete depredation that could help fishermen avoid overlap with whales. Odontocete depredation was observed on ˜6% of deep-set hauls across the fleet from 2004 to 2018. Model outcomes from binomial GAMMs suggested coarse patterns, for example, higher rates of depredation in winter, at lower latitudes, and with higher fishing effort. However, explanatory power was low, and no covariates were identified that could be used in a predictive context. The best indicator of depredation was the occurrence of depredation on a previous set of the same vessel. We identified spatiotemporal scales of this repeat depredation to provide guidance to fishermen on how far to move or how long to wait to reduce the probability of repeated interactions. The risk of depredation decreased with both space and time from a previous occurrence, with the greatest benefits achieved by moving ˜400 km or waiting ˜9 d, which reduced the occurrence of depredation from 18% to 9% (a 50% reduction). Fishermen moved a median 46 km and waited 4.7 h following an observed depredation interaction, which our analysis suggests is unlikely to lead to large reductions in risk. Satellite-tagged pelagic false killer whales moved up to 75 km in 4 h and 335 km in 24 h, suggesting that they can likely keep pace with longline vessels for at least four hours and likely longer. We recommend fishermen avoid areas of known depredation or bycatch by moving as far and as quickly as practical, especially within a day or two of the depredation or bycatch event. We also encourage captains to communicate depredation and bycatch occurrence to enable other vessels to similarly avoid high-risk areas
    • …
    corecore