121 research outputs found

    An efficient instantaneous ecg delineation algorithm

    Get PDF
    An efficient electrocardiogram (ECG) delineation algorithm is proposed to instantaneously delineate the ECG characteristic points, such as peak, onset and offset points of QRS, P and T waves. It is essential to delineate the ECG characteristic waves accurately and precisely as it ensure the performance of ECG analysis and diagnosis. The proposed delineation algorithm is based on discrete wavelet transform (DWT) and moving window average (MWA) techniques. The proposed delineation algorithm is evaluated and assessed with the annotation data of QT database in term of accuracy, sensitivity and positive predictive value. With the only available 13 sets QT database records with modified Lead II data, the proposed algorithm achieved significant P peak, R peak, T peak and T offset delineation performance with the accuracy of 95.34%, 99.80%, 90.82% and 86.33% respectively when evaluated with q1c annotation file. The mean difference between detected and annotated T offset based on q1c and q2c is 13 ms and 3.6 ms respectively. The delineation of 15 minute-long ECG record only required 74.702 second. As conclusion, the proposed ECG delineation algorithm based on DWT and MWA techniques have been proven simple, efficient and accurate in delineating the significant ECG characteristic points

    The NEUMA Project: towards Cooperative On-line Music Score Libraries

    Get PDF
    ΠΔρÎčέχΔÎč Ï„Îż Ï€Î»ÎźÏÎ”Ï‚ ÎșÎ”ÎŻÎŒÎ”ÎœÎżThe NEUMA project (http://neuma.irpmf-cnrs.fr) aims at designing and evaluating an open cooperative system for musician communities, enabling new search and analysis tools for symbolic musical content sharing and dissemination. The project is organized around the French CNRS laboratory of the BibliothĂšque Nationale de France which provides sample collections, user requirements and expert validation. The paper presents the project goals, its achitecture and current state of development. We illustrate our approach with an on-line publication of monodic collections centered on XVIIe century French liturgic chants

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Construction and test of a fine-grained liquid argon preshower prototype

    Get PDF
    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10−3^{\mathrm{-3}} was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~ÎŒ\mum in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider

    Performance of an endcap prototype of the Atlas accordion electromagnetic calorimeter

    Get PDF
    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below 11%/E(GeV)11\%/\sqrt{E(\rm GeV)} and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of 2.2η2.92.2\eta 2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter

    Performance of a large scale prototype of the ATLAS accordion electromagnetic calorimeter

    Get PDF
    A 2 m long prototype of a lead-liquid argon electromagnetic calorimeter with accordion-shaped electrodes, conceived as a sector of the barrel calorimeter of the future ATLAS experiment at the LHC, has been tested with electron and pion beams in the energy range 10 to 287 GeV. A sampling term of 10%/root E(GeV) was obtained for electrons in the rapidity range 0 < eta < 1, while the constant term measured over an area of about 1 m(2) is 0.69%. With a cell size of 2.7 cm the position resolution is. about 4 mm/root E(GeV)

    Construction and test of a fine-grained liquid argon preshower prototype

    Get PDF
    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10−3^{\mathrm{-3}} was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~ÎŒ\mum in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider
    • 

    corecore