45 research outputs found
Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset
Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson’s disease (PD). Yet the role that
mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we
comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the
scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We
calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our
primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the
secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional
genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial functionassociated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes
are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting
mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early
stage of PD
Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Identification of sixteen novel candidate genes for late onset Parkinson’s disease
Background
Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD.
Methods
The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls).
Results
Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD.
Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD.
Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment.
Conclusions
Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment
Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson's disease heritability
Parkinson’s disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions, but rather in global cellular processes detectable across several cell types
Anti-tumour necrosis factor discontinuation in inflammatory bowel disease patients in remission: study protocol of a prospective, multicentre, randomized clinical trial
Background:
Patients with inflammatory bowel disease who achieve remission with anti-tumour necrosis factor (anti-TNF) drugs may have treatment withdrawn due to safety concerns and cost considerations, but there is a lack of prospective, controlled data investigating this strategy. The primary study aim is to compare the rates of clinical remission at 1?year in patients who discontinue anti-TNF treatment versus those who continue treatment.
Methods:
This is an ongoing, prospective, double-blind, multicentre, randomized, placebo-controlled study in patients with Crohn?s disease or ulcerative colitis who have achieved clinical remission for ?6?months with an anti-TNF treatment and an immunosuppressant. Patients are being randomized 1:1 to discontinue anti-TNF therapy or continue therapy. Randomization stratifies patients by the type of inflammatory bowel disease and drug (infliximab versus adalimumab) at study inclusion. The primary endpoint of the study is sustained clinical remission at 1?year. Other endpoints include endoscopic and radiological activity, patient-reported outcomes (quality of life, work productivity), safety and predictive factors for relapse. The required sample size is 194 patients. In addition to the main analysis (discontinuation versus continuation), subanalyses will include stratification by type of inflammatory bowel disease, phenotype and previous treatment. Biological samples will be obtained to identify factors predictive of relapse after treatment withdrawal.
Results:
Enrolment began in 2016, and the study is expected to end in 2020.
Conclusions:
This study will contribute prospective, controlled data on outcomes and predictors of relapse in patients with inflammatory bowel disease after withdrawal of anti-TNF agents following achievement of clinical remission.
Clinical trial reference number:
EudraCT 2015-001410-1
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Recommended from our members
Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD.
Objective To investigate what genes and genomic processes underlie the risk of sporadic PD.
Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks.
Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role.
Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance.
Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Seguimiento de las guías españolas para el manejo del asma por el médico de atención primaria: un estudio observacional ambispectivo
Objetivo
Evaluar el grado de seguimiento de las recomendaciones de las versiones de la Guía española para el manejo del asma (GEMA 2009 y 2015) y su repercusión en el control de la enfermedad.
Material y métodos
Estudio observacional y ambispectivo realizado entre septiembre del 2015 y abril del 2016, en el que participaron 314 médicos de atención primaria y 2.864 pacientes.
Resultados
Utilizando datos retrospectivos, 81 de los 314 médicos (25, 8% [IC del 95%, 21, 3 a 30, 9]) comunicaron seguir las recomendaciones de la GEMA 2009. Al inicio del estudio, 88 de los 314 médicos (28, 0% [IC del 95%, 23, 4 a 33, 2]) seguían las recomendaciones de la GEMA 2015. El tener un asma mal controlada (OR 0, 19, IC del 95%, 0, 13 a 0, 28) y presentar un asma persistente grave al inicio del estudio (OR 0, 20, IC del 95%, 0, 12 a 0, 34) se asociaron negativamente con tener un asma bien controlada al final del seguimiento. Por el contrario, el seguimiento de las recomendaciones de la GEMA 2015 se asoció de manera positiva con una mayor posibilidad de que el paciente tuviera un asma bien controlada al final del periodo de seguimiento (OR 1, 70, IC del 95%, 1, 40 a 2, 06).
Conclusiones
El escaso seguimiento de las guías clínicas para el manejo del asma constituye un problema común entre los médicos de atención primaria. Un seguimiento de estas guías se asocia con un control mejor del asma. Existe la necesidad de actuaciones que puedan mejorar el seguimiento por parte de los médicos de atención primaria de las guías para el manejo del asma.
Objective: To assess the degree of compliance with the recommendations of the 2009 and 2015 versions of the Spanish guidelines for managing asthma (Guía Española para el Manejo del Asma [GEMA]) and the effect of this compliance on controlling the disease.
Material and methods: We conducted an observational ambispective study between September 2015 and April 2016 in which 314 primary care physicians and 2864 patients participated.
Results: Using retrospective data, we found that 81 of the 314 physicians (25.8%; 95% CI 21.3–30.9) stated that they complied with the GEMA2009 recommendations. At the start of the study, 88 of the 314 physicians (28.0%; 95% CI 23.4–33.2) complied with the GEMA2015 recommendations. Poorly controlled asthma (OR, 0.19; 95% CI 0.13–0.28) and persistent severe asthma at the start of the study (OR, 0.20; 95% CI 0.12–0.34) were negatively associated with having well-controlled asthma by the end of the follow-up. In contrast, compliance with the GEMA2015 recommendations was positively associated with a greater likelihood that the patient would have well-controlled asthma by the end of the follow-up (OR, 1.70; 95% CI 1.40–2.06).
Conclusions: Low compliance with the clinical guidelines for managing asthma is a common problem among primary care physicians. Compliance with these guidelines is associated with better asthma control. Actions need to be taken to improve primary care physician compliance with the asthma management guidelines