285 research outputs found
Glucagon-Like Peptide-1 Protects Human Islets against Cytokine-Mediated β-Cell Dysfunction and Death: A Proteomic Study of the Pathways Involved
Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.status: publishe
Recommended from our members
Understanding non-governmental organizations in world politics: the promise and pitfalls of the early ‘science of internationalism’
The years immediately preceding the First World War witnessed the development of a significant body of literature claiming to establish a ‘science of internationalism’. This article draws attention to the importance of this literature, especially in relation to understanding the roles of non-governmental organizations in world politics. It elaborates the ways in which this literature sheds light on issues that have become central to twenty-first century debates, including the characteristics, influence, and legitimacy of non-governmental organizations in international relations. Amongst the principal authors discussed in the article are Paul Otlet, Henri La Fontaine and Alfred Fried, whose role in the development of international theory has previously received insufficient attention. The article concludes with evaluation of potential lessons to be drawn from the experience of the early twentieth century ‘science of internationalism’
Prevention of primary non-function of islet xenografts in autoimmune diabetic NOD mice by anti-inflammatory agents
El libro Libertad e igualdad en el Caribe colombiano de la profesora Aline Helg, muestra la pretensión en Colombia de instaurar una nación blanca. Inicialmente con la aceptación de una nación mestiza en aras de blanqueamiento y cómo en este contexto, las comunidades negras se desdibujaron e invisibilizaron; términos utilizados por la autora para abordar el fenómeno en el Caribe colombiano entre 1770 a 1835. Buena parte de la tesis acerca de la invisibilización afro en la región, sugiere la autora, fue la ausencia de una identidad negra, que les permitiera tener una acción política colectiva, donde lo racial fuera central, como sí sucedió en Haití
The INNODIA Type 1 Diabetes Natural History Study: a European cohort of newly diagnosed children, adolescents and adults
Aims/hypothesis: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual’s clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. Methods: Data were collected from the large INNODIA cohort of individuals (aged 1.0–45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10–17 years; and ≥18 years. Results: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0–382.0) pmol/l (AUC 749.3 [466.2–1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). Conclusions/interpretation: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline. Graphical Abstract
PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis
OBJECTIVE:
The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in beta-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal beta-cells, besides evaluating its role in cytokine-induced signaling and beta-cell apoptosis.
RESEARCH DESIGN AND METHODS:
PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in beta-cells, allowing the assessment of cell death after cytokine treatment.
RESULTS:
PTPN2 mRNA and protein are expressed in human islets and rat beta-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat beta-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1beta + interferon (IFN)-gamma-induced beta-cell apoptosis and turned IFN-gamma alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-gamma-induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected beta-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced beta-cell death in PTPN2-deficient cells.
CONCLUSIONS:
We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-gamma signal transduction at the beta-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes
IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection
We have recently demonstrated that peripheral CD8 T cells require two separate activation hits to accumulate to high numbers in the lungs after influenza virus infection: a primary interaction with mature, antigen-bearing dendritic cells (DCs) in the lymph node, and a second, previously unrecognized interaction with MHC I–viral antigen–bearing pulmonary DCs in the lungs. We demonstrate that in the absence of lung-resident DC subsets, virus-specific CD8 T cells undergo significantly increased levels of apoptosis in the lungs; however, reconstitution with pulmonary plasmacytoid DCs and CD8α+ DCs promotes increased T cell survival and accumulation in the lungs. Further, our results show that the absence of DCs after influenza virus infection results in significantly reduced levels of IL-15 in the lungs and that pulmonary DC–mediated rescue of virus-specific CD8 T cell responses in the lungs requires trans-presentation of IL-15 via DC-expressed IL-15Rα. This study demonstrates a key, novel requirement for DC trans-presented IL-15 in promoting effector CD8 T cell survival in the respiratory tract after virus infection, and suggests that this trans-presentation could be an important target for the development of unique antiviral therapies and more effective vaccine strategies
MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA
β-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a ‘dialog’ between β-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects β-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic β-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat β-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic–polycitidilic acid—PIC). Real-time RT–PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary β-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify β-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate β-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic β-cell level
Multi‐omics analysis reveals drivers of loss of β‐cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIA multicenter study
Aims: Heterogeneity in the rate of beta-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. Methods: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in beta-cell mass measured as fasting C-peptide. Results: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in beta-cell function. The second signature was related to translation and viral infection was inversely associated with change in beta-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid beta-cell decline. Conclusions: Features that differ between individuals with slow and rapid decline in beta-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect
Characterization of the Autocrine/Paracrine Function of Vitamin D in Human Gingival Fibroblasts and Periodontal Ligament Cells
Background: We previously demonstrated that 25-hydroxyvitamin D-3, the precursor of 1 alpha,25-dihydroxyvitamin D-3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D-3 is converted to 1 alpha,25-dihydroxyvitamin D-3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1 alpha,25-dihydroxyvitamin D-3 in periodontal soft tissue cells. Methodology/Principal Findings: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1 alpha-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1 alpha-hydroxylase substrate 25-hydroxyvitamin D-3, human gingival fibroblasts and periodontal ligament cells generated detectable 1 alpha,25-dihydroxyvitamin D-3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1 alpha-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1 alpha, 25-dihydroxyvitamin D-3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1 alpha-hydroxylase (parathyroid hormone, calcium and 1 alpha,25-dihydroxyvitamin D-3) and Porphyromonas gingivalis lipopolysaccharide did not influence 1 alpha-hydroxylase expression significantly, however, interleukin-1 beta and sodium butyrate strongly induced 1 alpha-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. Conclusions/Significance: In this study, the expression, activity and functionality of 1 alpha-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305781700070&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)PubMed13ARTICLE6e39878
Dietary Vitamin D3 Supplements Reduce Demyelination in the Cuprizone Model
Vitamin D is emerging as a probably important environmental risk factor in multiple sclerosis, affecting both susceptibility and disease progression. It is not known to what extent this effect is due to a modulation of peripheral lymphocyte function, or to intrathecal effects of vitamin D. We investigated the effect of dietary vitamin D3 content on de/remyelination in the cuprizone model, which is a well established toxic model of demyelination, with no associated lymphocyte infiltration. The mice received diets either deficient of (<50 IU/kg), or supplemented with low (500 IU/kg), high (6200 IU/kg) or very high (12500 IU/kg) amounts of vit D3. Cuprizone (0.2%) was added to the diet for six weeks, starting two weeks after onset of the experimental diets. Mouse brain tissue was histopathologically evaluated for myelin and oligodendrocyte loss, microglia/macrophage activation, and lymphocyte infiltration after six weeks of cuprizone exposure, and two weeks after discontinuation of cuprizone exposure. High and very high doses of vitamin D3 significantly reduced the extent of white matter demyelination (p = 0.004) and attenuated microglia activation (p = 0.001). No differences in the density of oligodendrocytes were observed between the diet groups. Two weeks after discontinuation of cuprizone exposure, remyelination was only detectable in the white matter of mice receiving diets deficient of or with low vitamin D3 content. In conclusion, high dietary doses of vitamin D3 reduce the extent of demyelination, and attenuate microglia activation and macrophage infiltration in a toxic model of demyelination, independent of lymphocyte infiltration
- …
