261 research outputs found

    Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland

    Get PDF
    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED)

    Post-Stagnation Behavior in the Upstream Regions of Ice Stream C, West Antarctica

    Get PDF
    The region where two active tributaries feed into the now stagnant Ice Stream C (ISC), West Antarctica, is thickening. In this region, we observe a correlation between faster ice flow (the tributaries) and elevated topography. We conclude that stagnation of ISC resulted in compression and thickening along the tributaries, eventually forming a bulge on the ice-sheet surface. Modern hydraulic potential gradients would divert basal meltwater from ISC to Ice Stream B (ISB). These gradients are primarily controlled by the bulge topography, and so likely formed subsequent to trunk stagnation. As such, we argue against water piracy as being the cause for ISC\u27s stagnation. Kinematic-wave theory suggests that thickness perturbations propagate downstream over time, but that kinematic-wave speed decreases near the stagnant trunk. This and modest diffusion rates combine to trap most of the tributary-fed ice in the bulge region. Using interferometric synthetic aperture radar velocity measurements, we observe that half of the ice within ISC\u27s southern tributary flows into ISB. That flow pattern and other observations of non-steady flow in the region likely result from stagnation-induced thickening along upper ISC combined with a longer period of thinning on upper ISB. If current trends in thickness change continue, more ice from upper ISC will be diverted to ISB

    The introduction and refinement of the assessment of digitally recorded audio presentations

    Get PDF
    This case study critically evaluates benefits and challenges of a form of assessment included in a final year undergraduate Religious Studies Open University module, which combines a written essay task with a digital audio recording of a short oral presentation. Based on the analysis of student and tutor feedback and sample assignments, this study critically examines how teaching and learning practices linked to this novel form of assessment have been iteratively developed in light of the project findings over a period of two years. It concludes that while this form of assessment poses a number of challenges, it can create valuable opportunities for the development of transferable twenty-first-century graduate employability skills as well as deep, effective learning experiences, particularly – though not exclusively – in distance learning settings

    Increased ice flow in Western Palmer Land linked to ocean melting

    Get PDF
    A decrease in the mass and volume of Western Palmer Land has raised the prospect that ice speed has increased in this marine-based sector of Antarctica. To assess this possibility, we measure ice velocity over 25 years using satellite imagery and an optimized modeling approach. More than 30 unnamed outlet glaciers drain the 800 km coastline of Western Palmer Land at speeds ranging from 0.5 to 2.5 m/d, interspersed with near-stagnant ice. Between 1992 and 2015, most of the outlet glaciers sped up by 0.2 to 0.3 m/d, leading to a 13% increase in ice flow and a 15 km3/yr increase in ice discharge across the sector as a whole. Speedup is greatest where glaciers are grounded more than 300 m below sea level, consistent with a loss of buttressing caused by ice shelf thinning in a region of shoaling warm circumpolar water

    Spatiotemporal Interpolation of Elevation Changes Derived from Satellite Altimetry for Jakobshavn Isbrae, Greenland

    Get PDF
    Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED)

    Impact of model physics on estimating the surface mass balance of the Greenland ice sheet

    Get PDF
    Long-term predictions of sea level rise from increased Greenland ice sheet melting have been derived using Positive Degree Day models only. It is, however, unknown precisely what uncertainties are associated with applying this simple surface melt parameterization for future climate. We compare the behavior of a Positive Degree Day and Energy Balance/ Snowpack model for estimating the surface mass balance of the Greenland ice sheet under a warming climate. Both models were first tuned to give similar values for present-day mass balance using 10 years of ERA-40 climatology and were then run for 300 years, forced with the output of a GCM in which atmospheric CO2 increased to 4 times preindustrial levels. Results indicate that the Positive Degree Day model is more sensitive to climate warming than the Energy Balance model, generating annual runoff rates almost twice as large for a fixed ice sheet geometry. Roughly half of this difference was due to differences in the volume of melt generated and half was due to differences in refreezing rates in the snowpack. Our results indicate that the modeled snowpack properties evolve on a multidecadal timescale to changing climate, with a potentially large impact on the mass balance of the ice sheet; an evolution that was absent from the Positive Degree Day model. Copyright 2007 by the American Geophysical Union

    Reliability of MRI interpretation of Discoid Lateral Meniscus: A multicenter study

    Get PDF
    BACKGROUND: Discoid lateral meniscus (DLM) has a varied and complex morphology that can be challenging to assess and treat. Preoperative magnetic resonance imaging (MRI) is frequently used for diagnosis and surgical planning; however, it is not known whether surgeons are reliable and accurate in their interpretation of MRI findings when defining the pathomorphology of DLM. HYPOTHESIS: Surgeons experienced in treating DLM are able to reliably interpret DLM pathology using MRI. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 3. METHODS: Knee MRI scans from 44 patients (45 knees) were selected from a pool of surgically treated patients with DLM. Five reviewers (fellowship-trained pediatric sports medicine surgeons) performed independent review of each MRI scan using the PRiSM Discoid Meniscus Classification. Inter- and intraobserver reliability of the rating factors-primary (width, height, presence of peripheral instability or tear) and secondary (location of instability or tear, tear type)-was assessed using the Fleiss κ coefficient, designed for multiple readers with nominal variables (fair reliability, 0.21-0.40; moderate, 0.41-0.60; substantial, 0.61-0.80; excellent, 0.81-1.00). Reliability is reported as κ (95% CI). RESULTS: Interobserver reliability in assessing most primary and secondary characteristics ranged from substantial (meniscal width) to moderate (peripheral instability, anterior instability, posterior instability, and posterior tear). Intraobserver reliability for most characteristics ranged from substantial (peripheral instability, presence of tear, anterior instability, posterior instability, and posterior tear) to moderate (meniscal width, anterior tear, and tear type). Notable exceptions were presence of tear, anterior tear, and tear type-all with fair interobserver reliability. Height had poor interobserver reliability and fair intraobserver reliability. CONCLUSION: Orthopaedic surgeons reliably interpret MRI scans using the PRiSM Discoid Meniscus Classification for the majority of DLM characteristics but vary in their assessment of height and presence and type of tear. MRI evaluation may be helpful to diagnose discoid by width and identify the presence of instability: 2 major factors in the decision to proceed with surgery. Arthroscopic evaluation should be used in conjunction with MRI findings for complete DLM diagnosis

    Continued deceleration of Whillans Ice Stream, West Antarctica

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 32 (2005): L22501, doi:10.1029/2005GL024319.Earlier observations indicated that Whillans Ice Stream slowed from 1973 to 1997. We collected new GPS observations of the ice stream's speed in 2003 and 2004. These data show that the ice stream is continuing to decelerate at rates of about 0.6%/yr2, with faster rates near the grounding line. Our data also indicate that the deceleration extends over the full width of the ice plain. Extrapolation of the deceleration trend suggests the ice stream could stagnate sometime between the middle of the 21st and 22nd Centuries.This work was supported by the National Science Foundation (NSF-OPP-0229659). IJ’s contribution was supported by the Cryospheric Sciences Program of NASA’s Earth Science Enterprise
    • …
    corecore