694 research outputs found

    Evolution of a 3 \msun star from the main sequence to the ZZ Ceti stage: the role played by element diffusion

    Full text link
    The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. In particular, we follow the evolution of a 3 \msun model from the zero-age main sequence (the adopted metallicity is Z=0.02) all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. Emphasis is placed on the evolution of the chemical abundance distribution due to diffusion processes and the role played by hydrogen burning during the white dwarf evolution. Furthermore, the implications of our evolutionary models for the main quantities relevant for adiabatic pulsation analysis are discussed. Interestingly, the shape of the Ledoux term is markedly smoother as compared with previous detailed studies of white dwarfs. This is translated into a different behaviour of the Brunt-Vaisala frequency.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    The diffusion-induced nova scenario. CK Vul and PB 8 as possible observational counterparts

    Get PDF
    We propose a scenario for the formation of DA white dwarfs with very thin helium buffers. For these stars we explore the possible occurrence of diffusion-induced CNO- flashes, during their early cooling stage. In order to obtain very thin helium buffers, we simulate the formation of low mass remnants through an AGB final/late thermal pulse (AFTP/LTP scenario). Then we calculate the consequent white dwarf cooling evolution by means of a consistent treatment of element diffusion and nuclear burning. Based on physically sounding white dwarf models, we find that the range of helium buffer masses for these diffusion-induced novas to occur is significantly smaller than that predicted by the only previous study of this scenario. As a matter of fact, we find that these flashes do occur only in some low-mass (M < 0.6M) and low metallicity (Z_ZAMS <0.001) remnants about 10^6 - 10^7 yr after departing from the AGB. For these objects, we expect the luminosity to increase by about 4 orders of magnitude in less than a decade. We also show that diffusion-induced novas should display a very typical eruption lightcurve, with an increase of about a few magnitudes per year before reaching a maximum of M_V ~ -5 to -6. Our simulations show that surface abundances after the outburst are characterized by logNH/NHe ~ -0.15...0.6 and N>C>O by mass fractions. Contrary to previous speculations we show that these events are not recurrent and do not change substantially the final H-content of the cool (DA) white dwarf. (Abridged)Comment: 16 pages, 8 figures, 3 tables. Replaced to match the final version published by MNRAS. The definitive version is available at http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-296

    Stellar evolution and nucleosynthesis of Post-AGB Stars

    Full text link
    I discuss recent new models of post-Asymptotic Giant Branch stellar evolution. These models aim to clarify the evolutionary origin and status of a variety of hydrogen-deficient post-AGB stars such as central stars of planetary nebulae of Wolf-Rayet spectral type, PG1159 stars or Sakurai's object. Starting with AGB models with overshoot such stars can evolve through one of four distinct channels. Each of these channels has typical abundance patterns depending on the relative timing of the departure from the AGB and the occurrence of the last thermal pulse. I discuss the responsible mechanisms and observational counterparts.Comment: 9 pages, 1 figure, conference paper, workshop "Post-AGB objects (proto-planetary nebulae) as a phase of stellar evolution", Jul 5-7, 2000, Torun, Poland, to appear in Ap&S

    The born again (VLTP) scenario revisited: The mass of the remnants and implications for V4334 Sgr

    Get PDF
    We present 1-D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's Object) can be reproduced within the standard 1D-MLT stellar evolutionary models without the inclusion of any adhocad-hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low mass remnants \hbox{(M0.6M\lesssim0.6\msun)} are expected to behave markedly different than higher mass remnants \hbox{(M0.6M\gtrsim0.6\msun)} in the sense that the latter are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.Comment: Submitted to MNRAS. In includes an appendix regarding the treatment of reduced convective motions within the Mixing Length Theor

    The rates of Type Ia Supernovae. I. Analytical Formulations

    Full text link
    This paper provides a handy tool to compute the impact of Type Ia Supernova (SNIa) on the evolution of stellar systems. An effective formalism is presented to couple the SNIa rate to the star formation history, which rests upon the definition of two key properties of the progenitor's model: the realization probability of the SNIa event from a single stellar generation and the distribution function of the delay times. It is shown that the current SNIa rate in late type galaxies implies that the realization probability is on the order of 0.001. Analytical formulations for the distribution function of the delay times for Single (SD) and Double Degenerate (DD) progenitors are derived, based on stellar evolution arguments. These formulations, which agree well with the results of Monte Carlo simulations for the evolution of close binaries, have a built in parametrization of the key properties of the alternative candidates. The various models for the progenitors have different impact on the large scales. In particular, the paper examines the systematic trend of the SNIa rate per unit mass with the color of the parent galaxy, and shows that the recent observations favor the DD model. The SD scenario can reproduce the data only if the distribution of the primordial mass ratios is flat, and the accretion efficiency onto the WD is close to 100%. The timescale for the Fe release from SNIa to the interstellar medium ranges between 0.3 and 3 Gyr for a wide variety of hypothesis on the SNIa progenitors. (ABRIDGED)Comment: 28 pages, 18 figures, Astronomy and Astrophysics accepted, added 3 reference

    The population of close double white dwarfs in the Galaxy

    Get PDF
    We present a new model for the Galactic population of close double white dwarfs. The model accounts for the suggestion of the avoidance of a substantial spiral-in during mass transfer between a giant and a main-sequence star of comparable mass and for detailed cooling models. It agrees well with the observations of the local sample of white dwarfs if the initial binary fraction is close to 50% and an ad hoc assumption is made that white dwarfs with mass less than about 0.3 solar mass cool faster than the models suggest. About 1000 white dwarfs brighter than V=15 have to be surveyed for detection of a pair which has total mass greater than the Chandrasekhar mass and will merge within 10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren ed.

    Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models

    Get PDF
    We investigate the lifting effect of rotation on the thermal evolution of CO WDs accreting CO-rich matter. We find that rotation induces the cooling of the accreting star so that the delivered gravitational energy causes a greater expansion with respect to the standard non-rotating case. The increase in the surface radius produces a decrease in the surface value of the critical angular velocity and, therefore, the accreting WD becomes gravitationally unbound (Roche instability). This occurrence is due to an increase in the total angular momentum of the accreting WD and depends critically on the amount of specific angular momentum deposited by the accreted matter. If the specific angular momentum of the accreted matter is equal to that of the outer layers of the accreting structure, the Roche instability occurs well before the accreting WD can attain the physical conditions for C-burning. If the values of both initial angular velocity and accretion rate are small, we find that the accreting WD undergoes a secular instability when its total mass approaches 1.4 Msun. At this stage, the ratio between the rotational and the gravitational binding energy of the WD becomes of the order of 0.1, so that the star must deform by adopting an elliptical shape. In this case, since the angular velocity of the WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss of rotational energy and angular momentum via GWR. We find that, independent of the braking efficiency, the WD contracts and achieves the physical conditions suitable for explosive C-burning at the center so that a type Ia supernova event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical Journa

    Solar Neutrinos from CNO Electron Capture

    Full text link
    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.Comment: 4 pages, 1 figure, submitted to Phys. Rev. C; v2 has minor changes including integration over solar volume and addition of missing reference to previous continuum electron capture calculation; v3 has minor changes including addition of references and the correction of a small (about 1%) numerical error in the table

    Planetary Nebulae as Probes of Stellar Evolution and Populations

    Full text link
    Planetary Nebulae (PNe) have been used satisfactory to test the effects of stellar evolution on the Galactic chemical environment. Moreover, a link exists between nebular morphology and stellar populations and evolution. We present the latest results on Galactic PN morphology, and an extension to a distance unbiased and homogeneous sample of Large Magellanic Cloud PNe. We show that PNe and their morphology may be successfully used as probes of stellar evolution and populations.Comment: to appear in: Chemical Evolution of the Milky Way: stars versus clusters, ed. F. Giovannelli and F. Matteucci, Kluwer (2000), in pres
    corecore