386 research outputs found
Theory of "ferrisuperconductivity" in
We construct a two component Ginzburg-Landau theory with coherent pair motion
and incoherent quasiparticles for the phase diagram of .
The two staggered superconducting states live at the Brillouin zone center and
the zone boundary, and coexist for temperatures at concentrations
. We predict below
appearance of a charge density wave (CDW) and Be-sublattice distortion. The
distortion explains the SR relaxation anomaly, and Th-impurity mediated
scattering of ultrasound to CDW fluctuations explains the attenuation peak.Comment: 4 pages, 4 eps figures, REVTe
Superconductivity and Antiferromagnetism: Hybridization Impurities in a Two-Band Spin-Gapped Electron System
We present the exact solution of a one-dimensional model of a spin-gapped
correlated electron system with hybridization impurities exhibiting both
magnetic and mixed-valence properties. The host supports superconducting
fluctuations, with a spin gap. The localized electrons create a band of
antiferromagnetic spin excitations inside the gap for concentrations x of the
impurities below some critical value x_c. When x = x_c the spin gap closes and
a ferrimagnetic phase appears. This is the first example of an exactly solvable
model with coexisting superconducting and antiferromagnetic fluctuations which
in addition supports a quantum phase transition to a (compensated)
ferrimagnetic phase. We discuss the possible relevance of our results for
experimental systems, in particular the U-based heavy-fermion materials.Comment: 4 page
500 Days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared
SN 2013dy is a Type Ia supernova for which we have compiled an extraordinary
dataset spanning from 0.1 to ~ 500 days after explosion. We present 10 epochs
of ultraviolet (UV) through near-infrared (NIR) spectra with HST/STIS, 47
epochs of optical spectra (15 of them having high resolution), and more than
500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and
slowly declining light curve (delta m(B) = 0.92 mag), shallow Si II 6355
absorption, and a low velocity gradient. We detect strong C II in our earliest
spectra, probing unburned progenitor material in the outermost layers of the SN
ejecta, but this feature fades within a few days. The UV continuum of SN
2013dy, which is strongly affected by the metal abundance of the progenitor
star, suggests that SN 2013dy had a relatively high-metallicity progenitor.
Examining one of the largest single set of high-resolution spectra for a SN Ia,
we find no evidence of variable absorption from circumstellar material.
Combining our UV spectra, NIR photometry, and high-cadence optical photometry,
we construct a bolometric light curve, showing that SN 2013dy had a maximum
luminosity of 10.0^{+4.8}_{-3.8} * 10^{42} erg/s. We compare the synthetic
light curves and spectra of several models to SN 2013dy, finding that SN 2013dy
is in good agreement with a solar-metallicity W7 model.Comment: 22 pages, 18 figures, replaced with version accecpted for publication
in MNRA
Monte Carlo radiative transfer for the nebular phase of Type Ia supernovae
We extend the range of validity of the ARTIS 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae (SNe Ia) are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium population and ionization solver, a new multifrequency radiation field model, and a new atomic data set with forbidden transitions. We treat collisions with non-thermal leptons resulting from nuclear decays to account for their contribution to excitation, ionization, and heating. We validate our method with a variety of tests including comparing our synthetic nebular spectra for the well-known one-dimensional W7 model with the results of other studies. As an illustrative application of the code, we present synthetic nebular spectra for the detonation of a sub-Chandrasekhar white dwarf (WD) in which the possible effects of gravitational settling of 22Ne prior to explosion have been explored. Specifically, we compare synthetic nebular spectra for a 1.06 M☉ WD model obtained when 5.5 Gyr of very efficient settling is assumed to a similar model without settling. We find that this degree of 22Ne settling has only a modest effect on the resulting nebular spectra due to increased 58Ni abundance. Due to the high ionization in sub-Chandrasekhar models, the nebular [Ni II] emission remains negligible, while the [Ni III] line strengths are increased and the overall ionization balance is slightly lowered in the model with 22Ne settling. In common with previous studies of sub-Chandrasekhar models at nebular epochs, these models overproduce [Fe III] emission relative to [Fe II] in comparison to observations of normal SNe Ia
Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11
The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by
Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number
(104) of atoms in the primitive cell has precluded any previous full electronic
structure study. Using an efficient, local orbital based method within the
local spin density approximation to study the electronic structure, we find a
gap between a bonding valence band complex and an antibonding conduction band
continuum. The bonding bands lack one electron per formula unit of being
filled, making them low carrier density p-type metals. The hole resides in the
MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment,
leaving a net spin near 4 \mu_B that is consistent with experiment. These
manganites are composed of two disjoint but interpenetrating `jungle gym'
networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within
the same network, and weaker couplings between the networks whose sign and
magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be
ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic)
the ferro- and antiferromagnetic states are calculated to be essentially
degenerate. The band structure of the ferromagnetic states is very close to
half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two
additional figures (Fig.8 and 11 of the paper) are provided in JPG format in
separate files. Submitted to Phys. Rev. B on September 20th 200
Quality dating: a well-defined protocol implemented at ETH for high-precision 14c-dates tested on late glacial wood
Advances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zürich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval
Maki Parameter and Upper critical Field of the Heavy-Fermion Superconductor UBe13
We have performed low-temperature specific-heat measurements in magnetic
fields for a single crystal UBe13. It has been observed that our sample
exhibits a superconducting transition at an intermediate temperature between
previously reported values for two variant samples called H type and L type.
The specific heat C(T) of our sample shows a T^3 behavior in the temperature
range below 0.7 Tc, which is similar to the behavior of the H-type sample,
suggesting the existence of point nodes in the superconducting gap function. We
have obtained the upper-critical-field curves Hc2 for the [001], [110], and
[111] crystal axes, which show no anisotropy at least down to the lowest
measured temperature of 0.5 K. We have also derived the Maki parameter kappa2,
and it has been revealed that the kappa2 steeply decreases isotropically upon
cooling just below Tc. Paramagnetic effects and the symmetry of Cooper pairing
of UBe13 are discussed.Comment: 4 pages, 5 figure
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared
SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ∼ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B) = 0.92 mag), shallow Si II λ 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0+4.8-3.8 × 1042 erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.Facultad de Ciencias Astronómicas y GeofÃsicasInstituto de AstrofÃsica de La Plat
500 days of SN 2013dy: spectra and photometry from the ultraviolet to the infrared
SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ∼ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B) = 0.92 mag), shallow Si II λ 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0+4.8-3.8 × 1042 erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.Facultad de Ciencias Astronómicas y GeofÃsicasInstituto de AstrofÃsica de La Plat
- …