85 research outputs found

    Case study: ENVRI science demonstrators with D4Science

    Get PDF
    Whenever a community of practice starts developing an IT solution for its use case(s) it has to face the issue of carefully selecting “the platform” to use. Such a platform should match the requirements and the overall settings resulting from the specific application context (including legacy technologies and solutions to be integrated and reused, costs of adoption and operation, easiness in acquir- ing skills and competencies). There is no one-size-fits-all solution that is suitable for all application context, and this is particularly true for scientific communities and their cases because of the wide heterogeneity characterising them. However, there is a large consensus that solutions from scratch are inefficient and services that facilitate the development and maintenance of scientific community-specific solutions do exist. This chapter describes how a set of diverse communities of practice efficiently developed their science demonstrators (on analysing and pro- ducing user-defined atmosphere data products, greenhouse gases fluxes, particle formation, mosquito diseases) by leveraging the services offered by the D4Science infrastructure. It shows that the D4Science design decisions aiming at streamlin- ing implementations are effective. The chapter discusses the added value injected in the science demonstrators and resulting from the reuse of D4Science services, especially regarding Open Science practices and overall quality of service

    Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    Full text link
    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.Comment: 11 pages, 17 figure

    Results from the intercalibration of optical low light calibration sources 2011

    Get PDF
    Following the 38th Annual European Meeting on Atmospheric Studies by Optical Methods in Siuntio in Finland, an intercalibration workshop for optical low light calibration sources was held in Sodankylä, Finland. The main purpose of this workshop was to provide a comparable scale for absolute measurements of aurora and airglow. All sources brought to the intercalibration workshop were compared to the Fritz Peak reference source using the Lindau Calibration Photometer built by Wilhelm Barke and Hans Lauche in 1984. The results were compared to several earlier intercalibration workshops. It was found that most sources were fairly stable over time, with errors in the range of 5–25%. To further validate the results, two sources were also intercalibrated at UNIS, Longyearbyen, Svalbard. Preliminary analysis indicates agreement with the intercalibration in Sodankylä within about 15–25%

    Results from the intercalibration of optical low light calibration sources 2011

    Get PDF
    Following the 38th Annual European Meeting on Atmospheric Studies by Optical Methods in Siuntio in Finland, an intercalibration workshop for optical low light calibration sources was held in Sodankylä, Finland. The main purpose of this workshop was to provide a comparable scale for absolute measurements of aurora and airglow. All sources brought to the intercalibration workshop were compared to the Fritz Peak reference source using the Lindau Calibration Photometer built by Wilhelm Barke and Hans Lauche in 1984. The results were compared to several earlier intercalibration workshops. It was found that most sources were fairly stable over time, with errors in the range of 5–25%. To further validate the results, two sources were also intercalibrated at UNIS, Longyearbyen, Svalbard. Preliminary analysis indicates agreement with the intercalibration in Sodankylä within about 15–25%.publishedVersio

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Insulin Signaling, Lifespan and Stress Resistance Are Modulated by Metabotropic GABA Receptors on Insulin Producing Cells in the Brain of Drosophila

    Get PDF
    Insulin-like peptides (ILPs) regulate growth, reproduction, metabolic homeostasis, life span and stress resistance in worms, flies and mammals. A set of insulin producing cells (IPCs) in the Drosophila brain that express three ILPs (DILP2, 3 and 5) have been the main focus of interest in hormonal DILP signaling. Little is, however, known about factors that regulate DILP production and release by these IPCs. Here we show that the IPCs express the metabotropic GABAB receptor (GBR), but not the ionotropic GABAA receptor subunit RDL. Diminishing the GBR expression on these cells by targeted RNA interference abbreviates life span, decreases metabolic stress resistance and alters carbohydrate and lipid metabolism at stress, but not growth in Drosophila. A direct effect of diminishing GBR on IPCs is an increase in DILP immunofluorescence in these cells, an effect that is accentuated at starvation. Knockdown of irk3, possibly part of a G protein-activated inwardly rectifying K+ channel that may link to GBRs, phenocopies GBR knockdown in starvation experiments. Our experiments suggest that the GBR is involved in inhibitory control of DILP production and release in adult flies at metabolic stress and that this receptor mediates a GABA signal from brain interneurons that may convey nutritional signals. This is the first demonstration of a neurotransmitter that inhibits insulin signaling in its regulation of metabolism, stress and life span in an invertebrate brain

    Federated Identity Management for Research Collaborations

    Get PDF
    This white-paper expresses common requirements of Research Communities seeking to leverage Identity Federation for Authentication and Authorisation. Recommendations are made to Stakeholders to guide the future evolution of Federated Identity Management in a direction that better satisfies research use cases. The authors represent research communities, Research Services, Infrastructures, Identity Federations and Interfederations, with a joint motivation to ease collaboration for distributed researchers. The content has been edited collaboratively by the Federated Identity Management for Research (FIM4R) Community, with input sought at conferences and meetings in Europe, Asia and North America

    A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, <it>snpf</it>, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the <it>snpf </it>gene and its peptide products in the central nervous system (CNS) of <it>Drosophila </it>in relation to other neuronal markers.</p> <p>Results</p> <p>There are several hundreds of neurons in the larval CNS and several thousands in the adult <it>Drosophila </it>brain expressing <it>snpf </it>transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7).</p> <p>Conclusion</p> <p>It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.</p
    • …
    corecore