133 research outputs found

    External marking and behavior of early instar \u3ci\u3eHelicoverpa armigera\u3c/i\u3e (Lepidoptera: Noctuidae) on soybean

    Get PDF
    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a pest of major agricultural crops, such as soybean and cotton. A better understanding of larval movement is important for its integrated management and resistance management. Studies with neonates through second instar larvae are still limited by the difficulties involving the handling and observation of these instars. Many studies require marking larvae, and most research involving marking is focused on moths. However, our study investigated aspects of larval behavior of the second instar of H. armigera on soybean plants. The dyes luminous powder red and Sudan Red 7B were tested as external larval markers. Both dyes successfully marked the larvae for most of 1 stadium (48 h) without deleterious effects, and are useful for short-period behavioral studies. Luminous powder red was selected for the H. armigera larval behavior study on soybean because of ease of detection during both day and night. Second instar on-plant movement was consistent, independent of the d period (morning, afternoon, evening). In general, larvae established their feeding site within a few hours of release, and remained feeding on soybean leaves. Second instar behavior suggests that management by nocturnal insecticide application, based on H. armigera larval movement, would not have an advantage over daytime application. Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) está entre as principais pragas de importancia para culturas agrícolas, como soja e algodão. Compreender o comportamento larval desta espécie, principalmente durante os estádios iniciais é de suma importância para seu manejo integrado e para o manejo de populações resistentes. No entanto, pesquisas com neonatas ou lagartas de segundo ínstar são limitadas devido às dificuldades envolvendo o manuseio e observação de insetos tão diminutos. Muitos desses estudos requerem a marcação de indivíduos, e até o momento, a maioria das pesquisas com marcação de insetos é focada em adultos. Assim, nosso estudo investigou aspectos do comportamento de lagartas de segundo instar de H. armigera em plantas de soja. Estudos prévios também foram realizados com o intuito de se avaliar métodos alternativos e eficazes para marcação de estádios iniciais das larvas desse noctuídeo e suas aplicações em estudos de comportamento. Para tanto, os corantes luminous powder (azul e vermelho) e Sudan (azul e vermelho 7B) foram testados por meio da incorporação em dieta artifical e polvilhamento sobre as lagartas. Baseado em nossos ensaios prévios de laboratório, os corantes incorporados na dieta artifical apresentaram efeitos variáveis sobre os parâmetros biológicos de H. armigera e baixa persistência após o segundo ínstar. Os corantes aplicados por polvilhamento marcaram com sucesso as lagartas e luminous powder vermelho foi selecionado para o estudo de comportamento de lagartas de segundo ínstar em plantas de soja. Lagartas de segundo ínstar apresentaram comportamento de movimento nas plantas semelhantes, independentemente do período de avaliação (manhã, tarde e noite). Em geral, a maioria das lagartas estabeleceram seu sítio de alimentação após algumas horas e permaneceram se alimentando sobre as folhas de soja. Os resultados de comportamento de larvas de H. armigera em segundo instar, documentado no presente trabalho, indicam que aplicacões noturnas de insecticidas não representa vantagem para aumento da eficiência de controle, quando comparado com aplicacões de inseticidas durante o dia

    Radio-Continuum Emission From The Young Galactic Supernova Remnant G1.9+0.3

    Full text link
    We present an analysis of a new Australia Telescope Compact Array (ATCA) radio-continuum observation of supernova remnant (SNR) G1.9+0.3, which at an age of \sim181±\pm25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and the Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563%±\pm0.078% per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484% per year) than more recently (0.641% per year). We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is α=0.72±0.26\alpha=-0.72\pm 0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6% fractionally polarised radio emission with a peak of 17%±\pm3%. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B273μ\approx 273\muG, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant. This magnetic field strength implies a minimum total energy of the synchrotron radiation of Emin_{\textrm{min}} \approx 1.8×\times1048^{48} ergs.Comment: As accepted by Serbian Astronomical Journa

    Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1

    Get PDF
    In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42±\pm0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x102210^{22} cm2^{-2} and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~0.20f1/20.20f^{-1/2} cm3^{-3} to ~0.40f1/20.40f^{-1/2} cm3^{-3}, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~46f1/2M46f^{-1/2}M_{\odot}.Comment: Accepted for publication in A&

    Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant

    Get PDF
    Supernova remnants (SNRs) are believed to be the primary location of the acceleration of Galactic cosmic rays, via diffusive shock (Fermi) acceleration. Despite considerable theoretical work the precise details are still unknown, in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in, and affect the structure of, the SNR shocks. However, for the last ten years, X-ray observatories ASCA, and more recently Chandra, XMM-Newton, and Suzaku have made it possible to image the synchrotron emission at keV energies produced by cosmic-ray electrons accelerated in the SNR shocks. In this article, we describe a spatially-resolved spectroscopic analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the cutoff frequencies of electrons accelerated in the forward shock. We set upper limits on the electron diffusion coefficient and find locations where particles appear to be accelerated nearly as fast as theoretically possible (the Bohm limit).Comment: 18 pages, 5 figures. Accepted for publication in Nature Physics (DOI below), final version available week of August 28, 2006 at http://www.nature.com/nphy

    A Spitzer Space Telescope Infrared Survey of Supernova Remnants in the Inner Galaxy

    Full text link
    Using Infrared Array Camera (IRAC) images at 3.6, 4.5, 5.8, and 8 microns from the GLIMPSE Legacy science program on the Spitzer Space Telescope, we searched for infrared counterparts to the 95 known supernova remnants that are located within galactic longitudes 65>|l|>10 degrees and latitudes |b|<1 degree. Eighteen infrared counterparts were detected. Many other supernova remnants could have significant infrared emission but are in portions of the Milky Way too confused to allow separation from bright HII regions and pervasive mid-infrared emission from atomic and molecular clouds along the line of sight. Infrared emission from supernova remnants originates from synchrotron emission, shock-heated dust, atomic fine-structure lines, and molecular lines. The detected remnants are G11.2-0.3, Kes 69, G22.7-0.2, 3C 391, W 44, 3C 396, 3C 397, W 49B, G54.4-0.3, Kes 17, Kes 20A, RCW 103, G344.7-0.1, G346.6-0.2, CTB 37A, G348.5-0.0, and G349.7+0.2. The infrared colors suggest emission from molecular lines (9 remnants), fine-structure lines (3), and PAH (4), or a combination; some remnants feature multiple colors in different regions. None of the remnants are dominated by synchrotron radiation at mid-infrared wavelengths. The IRAC-detected sample emphasizes remnants interacting with relatively dense gas, for which most of the shock cooling occurs through molecular or ionic lines in the mid-infrared.Comment: Accepted 10/18/2005 for publication in "The Astronomical Journal". The figures in this astro-ph submission are drastically reduced in quality in order to fit within its limit

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    SN 2008S: an electron capture SN from a super-AGB progenitor?

    Get PDF
    We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high density CS medium. The light curve is similar in shape to that of SN 1998S and SN 1979C, although significantly fainter at maximum light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail phase decay rate consistent with that of ^{56}Co. We propose that this is evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun). The large MIR flux detected shortly after explosion can be explained by a light echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a combination of warm newly-formed ejecta dust together with shock-heated dust in the CS environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90AU and outer radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~ 10^{4.6} L_Sun. The combination of our monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8 M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main properties of the electron capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.Comment: accepted for publication in MNRAS (2009 May 7

    Characterization of Dengue Virus Type 2: New Insights on the 2010 Brazilian Epidemic

    Get PDF
    Dengue viruses (DENV) serotypes 1, 2, and 3 have been causing yearly outbreaks in Brazil. In this study, we report the re-introduction of DENV2 in the coast of São Paulo State. Partial envelope viral genes were sequenced from eighteen patients with dengue fever during the 2010 epidemic. Phylogenetic analysis showed this strain belongs to the American/Asian genotype and was closely related to the virus that circulated in Rio de Janeiro in 2007 and 2008. The phylogeny also showed no clustering by clinical presentation, suggesting that the disease severity could not be explained by distinct variants or genotypes. The time of the most recent common ancestor of American/Asian genotype and the São Paulo and Rio de Janeiro (SP/RJ) monophyletic cluster was estimated to be around 40 and 10 years, respectively. Since this virus was first identified in Brazil in 2007, we suggest that it was already circulating in the country before causing the first documented outbreak. This is the first description of the 2010 outbreak in the State of São Paulo, Brazil, and should contribute to efforts to control and monitor the spread of DENVs in endemic areas

    Discovery of a pulsar-powered bow shock nebula in the Small Magellanic Cloud supernova remnant DEMS5

    Get PDF
    We report the discovery of a new Small Magellanic Cloud pulsar wind nebula (PWN) at the edge of the supernova remnant (SNR) DEMS5. The pulsar powered object has a cometary morphology similar to the Galactic PWN analogues PSR B1951+32 and ´the mouse´. It is travelling supersonically through the interstellar medium.We estimate the pulsar kick velocity to be in the range of 700-2000 km s-1 for an age between 28 and 10 kyr. The radio spectral index for this SNR-PWN-pulsar system is flat (-0.29 ± 0.01) consistent with other similar objects. We infer that the putative pulsar has a radio spectral index of -1.8, which is typical for Galactic pulsars. We searched for dispersion measures up to 1000 cm-3 pc but found no convincing candidates with an S/N greater than 8. We produce a polarization map for this PWN at 5500 MHz and find a mean fractional polarization of P ∼ 23 per cent. The X-ray power-law spectrum (τ ∼ 2) is indicative of non-thermal synchrotron emission as is expected from PWN-pulsar system. Finally, we detect DEMS5 in infrared (IR) bands. Our IR photometric measurements strongly indicate the presence of shocked gas that is expected for SNRs. However, it is unusual to detect such IR emission in an SNR with a supersonic bow shock PWN.We also find a low-velocity HI cloud of ∼107 km s-1 that is possibly interacting with DEMS5. SNR DEMS5 is the first confirmed detection of a pulsar-powered bow shock nebula found outside the Galaxy.Fil: Alsaberi, Rami Z. E.. Western Sydney University; AustraliaFil: Maitra, C.. Max Planck Institut Für Extraterrestrische Physik; AlemaniaFil: Filipovic, M. D.. Western Sydney University; AustraliaFil: Bozzetto, L.M.. Western Sydney University; AustraliaFil: Haberl, F.. Max Planck Institut Für Extraterrestrische Physik; AlemaniaFil: Maggi, P.. Université de Strasbourg; FranciaFil: Sasaki, M.. Universitat Erlangen-Nuremberg; AlemaniaFil: Manjolovic, P.. Western Sydney University; AustraliaFil: Velovic, V.. University Of Belgrade; SerbiaFil: Kavanagh, P.. Dublin Institute For Advanced Studies; IrlandaFil: Maxted, N. I.. University Of New South Wales (unsw) Australia; AustraliaFil: Urosevic, D.. Isaac Newton Institute Of Chile; ChileFil: Rowell, G. P.. University of Adelaide; AustraliaFil: Wong, G. F.. University Of New South Wales (unsw) Australia; AustraliaFil: For, B. Q.. The University Ofwestern Australia; AustraliaFil: O'Brien, A. N.. Western Sydney University; AustraliaFil: Galvin, T. J.. Western Sydney University; AustraliaFil: Staveley-Smith, L.. The University Ofwestern Australia; AustraliaFil: Norris, R. P.. Western Sydney University; AustraliaFil: Jarrett, T.. University Of Cape Town; SudáfricaFil: Kothes, R.. National Research Council Canada; CanadáFil: Luken, K. J.. Western Sydney University; AustraliaFil: Hurley-Walker, N.. Curtin University; AustraliaFil: Sano, H.. Nagoya University; JapónFil: Onic, D.. University Of Belgrade; SerbiaFil: Dai, S. T.. Australia Telescope National Facility; AustraliaFil: Pannuti, G.. Morehead State University; Estados UnidosFil: Tothill, N. F. H.. Western Sydney University; AustraliaFil: Crawford, Evan. Western Sydney University; AustraliaFil: Yew, M.. Western Sydney University; AustraliaFil: Bojicic, I.. Western Sydney University; AustraliaFil: Dénes, H.. Netherlands Foundation For Research In Astronomy; BélgicaFil: McClure-Griffiths, N.. Australian National University; AustraliaFil: Gurovich, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Fukui, Y.. Nagoya University; Japó

    Dickkopf1 Regulates Fate Decision and Drives Breast Cancer Stem Cells to Differentiation: An Experimentally Supported Mathematical Model

    Get PDF
    BACKGROUND: Modulation of cellular signaling pathways can change the replication/differentiation balance in cancer stem cells (CSCs), thus affecting tumor growth and recurrence. Analysis of a simple, experimentally verified, mathematical model suggests that this balance is maintained by quorum sensing (QS). METHODOLOGY/PRINCIPAL FINDINGS: To explore the mechanism by which putative QS cellular signals in mammary stem cells (SCs) may regulate SC fate decisions, we developed a multi-scale mathematical model, integrating extra-cellular and intra-cellular signal transduction within the mammary tissue dynamics. Preliminary model analysis of the single cell dynamics indicated that Dickkopf1 (Dkk1), a protein known to negatively regulate the Wnt pathway, can serve as anti-proliferation and pro-maturation signal to the cell. Simulations of the multi-scale tissue model suggested that Dkk1 may be a QS factor, regulating SC density on the level of the whole tissue: relatively low levels of exogenously applied Dkk1 have little effect on SC numbers, whereas high levels drive SCs into differentiation. To verify these model predictions, we treated the MCF-7 cell line and primary breast cancer (BC) cells from 3 patient samples with different concentrations and dosing regimens of Dkk1, and evaluated subsequent formation of mammospheres (MS) and the mammary SC marker CD44(+)CD24(lo). As predicted by the model, low concentrations of Dkk1 had no effect on primary BC cells, or even increased MS formation among MCF-7 cells, whereas high Dkk1 concentrations decreased MS formation among both primary BC cells and MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: Our study suggests that Dkk1 treatment may be more robust than other methods for eliminating CSCs, as it challenges a general cellular homeostasis mechanism, namely, fate decision by QS. The study also suggests that low dose Dkk1 administration may be counterproductive; we showed experimentally that in some cases it can stimulate CSC proliferation, although this needs validating in vivo
    corecore