745 research outputs found

    Dispersion-Enhanced Laser Gyroscope

    Get PDF
    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response

    Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    Full text link
    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise

    Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions

    Full text link
    An investigation of ultrashort pulsed laser induced surface modification due to conditions that result in a superheated melted liquid layer and material evaporation are considered. To describe the surface modification occurring after cooling and resolidification of the melted layer and understand the underlying physical fundamental mechanisms, a unified model is presented to account for crater and subwavelength ripple formation based on a synergy of electron excitation and capillary waves solidification. The proposed theoretical framework aims to address the laser-material interaction in sub-ablation conditions and thus minimal mass removal in combination with a hydrodynamics-based scenario of the crater creation and ripple formation following surface irradiation with single and multiple pulses, respectively. The development of the periodic structures is attributed to the interference of the incident wave with a surface plasmon wave. Details of the surface morphology attained are elaborated as a function of the imposed conditions and results are tested against experimental data

    Physical realization of coupled Hilbert-space mirrors for quantum-state engineering

    Full text link
    Manipulation of superpositions of discrete quantum states has a mathematical counterpart in the motion of a unit-length statevector in an N-dimensional Hilbert space. Any such statevector motion can be regarded as a succession of two-dimensional rotations. But the desired statevector change can also be treated as a succession of reflections, the generalization of Householder transformations. In multidimensional Hilbert space such reflection sequences offer more efficient procedures for statevector manipulation than do sequences of rotations. We here show how such reflections can be designed for a system with two degenerate levels - a generalization of the traditional two-state atom - that allows the construction of propagators for angular momentum states. We use the Morris-Shore transformation to express the propagator in terms of Morris-Shore basis states and Cayley-Klein parameters, which allows us to connect properties of laser pulses to Hilbert-space motion. Under suitable conditions on the couplings and the common detuning, the propagators within each set of degenerate states represent products of generalized Householder reflections, with orthogonal vectors. We propose physical realizations of this novel geometrical object with resonant, near-resonant and far-off-resonant laser pulses. We give several examples of implementations in real atoms or molecules.Comment: 15 pages, 6 figure

    Susceptibility to heavy metals and antibiotics of eight deep-sea hydrothermal vent bacteria carrying a 51.7 kb plasmid

    Get PDF
    Eight Pseudomonas-like bacteria isolated from the tube of the deep-sea hydrothermal vent Polychaete Alvinella pompejana were found to carry a 51.7 kb plasmid. All isolates but one were resistant to zinc (3 mM or more) and arsenate ions (200 mM or more). The strains were resistant to penicillin and chloramphenicol

    Beyond seasickness: A motivated call for a new motion sickness standard across motion environments

    Get PDF
    Motion sickness is known under several names in different domains, such as seasickness, carsickness, cybersickness, and simulator sickness. As we will argue, these can all be considered manifestations of one common underlying mechanism. In recent years, it has received renewed interest, largely due to the advent of automated vehicles and developments in virtual reality, in particular using head-mounted displays. Currently, the most widely accepted standard to predict motion sickness is ISO 2631-1 (1997), which is based on studies on seasickness and has limited applicability to these newer domains. Therefore, this paper argues for extending the ISO standard to cover all forms of motion sickness, to incorporate factors affecting motion sickness, and to consider various degrees of severity of motion sickness rather than just emesis. This requires a dedicated standard, separate from other effects of whole-body vibration as described in the current ISO 2631-1. To that end, we first provide a sketch of the historical origins of the ISO 2631-1 standard regarding motion sickness and discuss the evidence for a common mechanism underlying various forms of motion sickness. After discussing some methodological issues concerning the measurement of motion sickness, we outline the main knowledge gaps that require further research

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Clinical and electrophysiological characterization of myokymia and neuromyotonia in Jack Russell Terriers.

    Get PDF
    BACKGROUND: Generalized myokymia and neuromyotonia (M/NM) in Jack Russell Terriers (JRTs) is related to peripheral nerve hyperexcitability syndrome in humans, a symptom complex resulting from diverse etiologies. OBJECTIVE: Clinical and electrodiagnostic evaluation is used to narrow the list of possible etiological diagnoses in JRTs with M/NM. ANIMALS: Nine healthy JRTs and 8 affected JRTs. METHODS: A prospective study was conducted comparing clinical and electrophysiological characteristics in 8 JRTs affected by M/NM with 9 healthy JRT controls. RESULTS: All affected dogs except 1 had clinical signs typical of hereditary ataxia (HA). In 6 dogs, neuromyotonic discharges were recorded during electromyogram. Motor nerve conduction studies showed an axonal neuropathy in only 1 affected dog. Compared with controls, brainstem auditory-evoked potentials (BAEP) showed prolonged latencies (P<.05) accompanied by the disappearance of wave components in 3 dogs. Onset latencies of tibial sensory-evoked potentials (SEP) recorded at the lumbar intervertebral level were delayed in the affected group (P<.001). The BAEP and SEP results of the only neuromyotonic dog without ataxia were normal. CONCLUSIONS AND CLINICAL IMPORTANCE: The BAEP and spinal SEP abnormalities observed in JRTs with M/NM were associated with the presence of HA. Therefore, these electrophysiological findings presumably arise from the neurodegenerative changes characterizing HA and do not directly elucidate the pathogenesis of M/NM. An underlying neuronal ion channel dysfunction is thought to be the cause of M/NM in JRTs
    corecore