914 research outputs found

    Dispersion-Enhanced Laser Gyroscope

    Get PDF
    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response

    Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    Full text link
    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise

    Physical realization of coupled Hilbert-space mirrors for quantum-state engineering

    Full text link
    Manipulation of superpositions of discrete quantum states has a mathematical counterpart in the motion of a unit-length statevector in an N-dimensional Hilbert space. Any such statevector motion can be regarded as a succession of two-dimensional rotations. But the desired statevector change can also be treated as a succession of reflections, the generalization of Householder transformations. In multidimensional Hilbert space such reflection sequences offer more efficient procedures for statevector manipulation than do sequences of rotations. We here show how such reflections can be designed for a system with two degenerate levels - a generalization of the traditional two-state atom - that allows the construction of propagators for angular momentum states. We use the Morris-Shore transformation to express the propagator in terms of Morris-Shore basis states and Cayley-Klein parameters, which allows us to connect properties of laser pulses to Hilbert-space motion. Under suitable conditions on the couplings and the common detuning, the propagators within each set of degenerate states represent products of generalized Householder reflections, with orthogonal vectors. We propose physical realizations of this novel geometrical object with resonant, near-resonant and far-off-resonant laser pulses. We give several examples of implementations in real atoms or molecules.Comment: 15 pages, 6 figure

    Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions

    Full text link
    An investigation of ultrashort pulsed laser induced surface modification due to conditions that result in a superheated melted liquid layer and material evaporation are considered. To describe the surface modification occurring after cooling and resolidification of the melted layer and understand the underlying physical fundamental mechanisms, a unified model is presented to account for crater and subwavelength ripple formation based on a synergy of electron excitation and capillary waves solidification. The proposed theoretical framework aims to address the laser-material interaction in sub-ablation conditions and thus minimal mass removal in combination with a hydrodynamics-based scenario of the crater creation and ripple formation following surface irradiation with single and multiple pulses, respectively. The development of the periodic structures is attributed to the interference of the incident wave with a surface plasmon wave. Details of the surface morphology attained are elaborated as a function of the imposed conditions and results are tested against experimental data

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media

    Frequency Characteristics of Visually Induced Motion Sickness

    Get PDF
    This article was published in the journal, Human Factors [Sage Publications / © Human Factors and Ergonomics Society.]. The definitive version is available at: http://dx.doi.org/10.1177/0018720812469046Objective: The aim of this study was to explore the frequency response of visually induced motion sickness (VIMS) for oscillating linear motion in the foreand- aft axis. Background: Simulators, virtual environments, and commercially available video games that create an illusion of self-motion are often reported to induce the symptoms seen in response to true motion. Often this human response can be the limiting factor in the acceptability and usability of such systems. Whereas motion sickness in physically moving environments is known to peak at an oscillation frequency around 0.2 Hz, it has recently been suggested that VIMS peaks at around 0.06 Hz following the proposal that the summed response of the visual and vestibular selfmotion systems is maximized at this frequency. Methods: We exposed 24 participants to random dot optical flow patterns simulating oscillating foreand- aft motion within the frequency range of 0.025 to 1.6 Hz. Before and after each 20-min exposure, VIMS was assessed with the Simulator Sickness Questionnaire. Also, a standard motion sickness scale was used to rate symptoms at 1-min intervals during each trial. Results: VIMS peaked between 0.2 and 0.4 Hz with a reducing effect at lower and higher frequencies. Conclusion: The numerical prediction of the “crossover frequency” hypothesis, and the design guidance curve previously proposed, cannot be accepted when the symptoms are purely visually induced. Application: In conditions in which stationary observers are exposed to optical flow that simulates oscillating fore-and-aft motion, frequencies around 0.2 to 0.4 Hz should be avoided

    How can humans understand their automated cars? HMI principles, problems and solutions

    Get PDF
    As long as vehicles do not provide full automation, the design and function of the Human Machine Interface (HMI) is crucial for ensuring that the human “driver” and the vehicle-based automated systems collaborate in a safe manner. When the driver is decoupled from active control, the design of the HMI becomes even more critical. Without mutual understanding, the two agents (human and vehicle) will fail to accurately comprehend each other’s intentions and actions. This paper proposes a set of design principles for in-vehicle HMI and reviews some current HMI designs in the light of those principles. We argue that in many respects, the current designs fall short of best practice and have the potential to confuse the driver. This can lead to a mismatch between the operation of the automation in the light of the current external situation and the driver’s awareness of how well the automation is currently handling that situation. A model to illustrate how the various principles are interrelated is proposed. Finally, recommendations are made on how, building on each principle, HMI design solutions can be adopted to address these challenges
    corecore