91 research outputs found

    Recent Decisions

    Get PDF
    Comments on recent decisions by L. D. Wichmann, Lawrence James Bradley, John F. Beggan, John A. Slevin, Robert P. Mone, and F. James Kane

    Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Get PDF
    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east–west direction

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    International Geomagnetic Reference Field: the eleventh generation

    Get PDF
    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V-MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field model for epoch 2010.0, and a linear predictive secular variation model for 2010.0-2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity for epoch 2010.0 and their predicted rates of change for 2010.0-2015.0 are presented. The recent evolution of the South Atlantic Anomaly and magnetic pole positions are also examine

    Forecasting yearly geomagnetic variation through sequential estimation of core low and magnetic diffusion

    Get PDF
    Earth’s internal magnetic field is generated through motion of the electrically conductive iron-alloy fluid comprising its outer core. Temporal variability of this magnetic field, termed secular variation (SV), results from two processes: one is the interaction between core fluid motion and the magnetic field, the other is magnetic diffusion. As diffusion is widely thought to take place over relatively long, millennial time scales, it is common to disregard it when considering yearly to decadal field changes; in this frozen-flux approximation, core fluid motion may be inferred on the core–mantle boundary (CMB) using observations of SV at Earth’s surface. Such flow models have been used to forecast variation in the magnetic field. However, recent work suggests that diffusion may also contribute significantly to SV on short time scales provided that the radial length scale of the magnetic field structure within the core is sufficiently short. In this work, we introduce a hybrid method to forecast field evolution that considers a model based on both a steady flow and diffusion, in which we adopt a two-step process: first fitting the SV to a steady flow, and then fitting the residual by magnetic diffusion. We assess this approach by hindcasting the evolution for 2010–2015, based on fitting the models to CHAOS-6 using time windows prior to 2010. We find that including diffusion yields a reduction of up to 25% in the global hindcast error at Earth’s surface; at the CMB this error reduction can be in excess of 77%. We show that fitting the model over the shortest window that we consider, 2009–2010, yields the lowest hindcast error. Based on our hindcast tests, we present a candidate model for the SV over 2020–2025 for IGRF-13, fit over the time window 2018.3–2019.3. Our forecasts indicate that over the next decade the axial dipole will continue to decay, reversed-flux patches will increase in both area and intensity, and the north magnetic (dip) pole will continue to migrate towards Siberia

    International Geomagnetic Reference Field: the eleventh generation

    Get PDF
    The eleventh generation of the International Geomagnetic Reference Field (IGRF)was adopted in December 2009 by the International Association of Geomagnetism and AeronomyWorking Group V-MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field model for epoch 2010.0, and a linear predictive secular variation model for 2010.0–2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity for epoch 2010.0 and their predicted rates of change for 2010.0–2015.0 are presented. The recent evolution of the South Atlantic Anomaly and magnetic pole positions are also examined

    Number preferences in lotteries

    Get PDF
    We explore people's preferences for numbers in large proprietary data sets from two different lottery games. We find that choice is far from uniform, and exhibits some familiar and some new tendencies and biases. Players favor personally meaningful and situationally available numbers, and are attracted towards numbers in the center of the choice form. Frequent players avoid winning numbers from recent draws, whereas infrequent players chase these. Combinations of numbers are formed with an eye for aesthetics, and players tend to spread their numbers relatively evenly across the possible range

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    • 

    corecore