326 research outputs found

    General rules for environmental management to prioritise social ecological systems research based on a value of information approach

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record1. Globally, billions of dollars are invested each year to help understand the dynamics of social ecological systems (SES) in bettering both social and environmental outcomes. However, there is no scientific consensus on which aspect of an SES is most important and urgent to understand; particularly given the realities of limited time and money. 2. Here we use a simulation‐based “value of information” approach to examine where research will deliver the most important information for environmental management in four SESs representing a range of real‐life environmental issues. 3. We find that neither social nor ecological information is consistently the most important: instead, researchers should focus on understanding the primary effects of their management actions. 4. Thus, when managers are undertaking social actions the highest research priority should be understanding the dynamics of social groups. Alternatively, when manipulating ecological systems it will be most important to quantify ecological population dynamics. 5. Synthesis and applications. Our results provide a standard assessment to determine the uncertain social ecological systems (SES) component with the highest expected impact for management outcomes. First, managers should determine the structure of their SES by identifying social and ecological nodes. Second, managers should identify the qualitative nature of the network, by determining which nodes are linked, but not the strength of those interactions. Finally, managers should identify the actions available to them to intervene in the SES. From these steps, managers will be able to identify the SES components that are closest to the management action(s), and it is these nodes and interactions that should receivepriority research attention to achieve effective environmental decision making.Centre of Excellence for Environmental Decisions, Australian Research Counc

    Acute Systemic Inflammatory Response to Lipopolysaccharide Stimulation in Pigs Divergently Selected for Residual Feed Intake

    Get PDF
    Background: It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI) compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations and transcriptomic changes in peripheral blood cells. Results: LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At 4 h post injection (hpi), the low-RFI line had a significantly lower (p= 0.0075) mean rectal temperature compared to the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least one time point post injection relative to baseline in at least one line (n =4 per line) (|log2(fold change)| ≄ log2(1.2); q \u3c 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline. But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense response, immune response, and signaling were enriched in different co-expression clusters of genes responsive to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line at 24 hpi. Conclusions: The pig lines divergently selected for RFI had a largely similar response to LPS stimulation. However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig’sacute systemic inflammatory response to LPS, although slight differences in intensity and duration may occur

    The nucleotide and partial amino acid sequences of rat fetuin

    Get PDF
    Fetuins are among the major plasma proteins, yet their biological role has remained elusive. Here we report the molecular cloning of rat fetuin and the sequence analysis of a full-length clone, RF619 of 1456 bp with an open reading frame of 1056 bp encoding 352 amino acid residues. The coding part of RF619 was identical with the cDNA sequence of the natural inhibitor of the insulin receptor tyrosine kinase from rat (pp63) except for four substitutions and a single base insertion causing divergence of the predicted protein sequences. Partial amino acid sequences of rat plasma fetuin were in agreement with the predictions based on the RF619 cDNA. Purified rat fetuin inhibited the insulin receptor tyrosine kinase in vitro. Therefore, we conclude that RF619 and pp63 cDNA encode the same protein, i.e. authentic rat fetuin which is a functional tyrosine kinase inhibitor

    Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

    Get PDF
    Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.United States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633)United States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF))United States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100))United States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship)United States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE)

    Hydrological and productive impacts of recent land-use and land-cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands

    Get PDF
    Over the last decades, the rapid replacement of native forests by crops and pastures in the Argentinean semiarid Chaco plains has triggered unprecedented groundwater level raises resulting from deep drainage increases, leading to the first massive waterlogging event on records (~25,000 Ha flooded in 2015 near Bandera, one of the most cultivated clusters of the Chaco). In this paper, we link this episode to the ongoing deforestation and cropping scheme shifts through the combined analysis of remote sensing data, agricultural surveys, local farmer information and hydrologic modelling. From 2000 to 2015, the agricultural area of Bandera increased from 21% to 50%, mostly at the expense of dry forests. In this period, agriculture migrated from more intensive (i.e., double-cropping) to more water-conservative (i.e., late-summer single crops) schemes as a general strategy to reduce drought risks. These changes reduced regional evapotranspiration and increased the intensity of deep drainage in wet years. Contrasting cropping schemes displayed significant evapotranspiration differences, but all of them experienced substantial drainage losses (~100–200 mm) during the wettest year (2014/2015), suggesting that cropping adjustments have a limited capacity to halt the generation of water excesses. Nearly 50% of the cropped area in Bandera could not be sown or harvested following the groundwater recharge event of 2014/2015. In the ongoing context of shallow and rising water tables, the introduction of novel cropping schemes that include deep-rooted perennials, to promote transpirative groundwater discharge, seems crucial to avoid the recurrence of water excesses and their associated dryland salinity risk in the region.Fil: GimĂ©nez, RaĂșl. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Mercau, Jorge Luis. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional La Pampa-San Luis. EstaciĂłn Experimental Agropecuaria San Luis. Agencia de ExtensiĂłn Rural San Luis; ArgentinaFil: Bert, Federico Esteban. Universidad de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a; ArgentinaFil: Kuppel, Sylvain. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Centre National de la Recherche Scientifique; Francia. University of Aberdeen; Reino UnidoFil: Baldi, GermĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Departamento de GeologĂ­a; ArgentinaFil: Houspanossian, Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Departamento de GeologĂ­a; ArgentinaFil: Magliano, Patricio NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Departamento de BioquĂ­mica y Ciencias BiolĂłgicas; ArgentinaFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentin

    Disruption of Nrf2, a Key Inducer of Antioxidant Defenses, Attenuates ApoE-Mediated Atherosclerosis in Mice

    Get PDF
    Background: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2-/-) causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. Principal Findings: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2-/- mice with apoliporotein E-deficient (ApoE-/- mice. ApoE-/- and ApoE-/- Nrf2-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE-/- Nrf2-/- mice exhibited significantly smaller plaque area than ApoE-/- controls (11.5% vs 29.5%). This decrease in plaque area observed in ApoE-/- Nrf2-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL) by isolated macrophages from ApoE-/- Nrf2-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE-/- Nrf2-/- mice exhibited decreased expression of the scavenger receptor CD36. Conclusions: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.9 page(s

    Heme catabolism by heme oxygenase-1 confers host resistance to Mycobacterium infection

    Get PDF
    Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (M) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1(-/-)) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1(+/+)) controls. Furthermore, Hmox1(-/-) mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1(-/-) versus Hmox1(+/+) SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected M, an effect mimicked by exogenous heme administration to M. avium-infected wild-type M in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in M, contributing critically to host resistance to Mycobacterium infection.European Community 6th Framework grant: (LSH-2005-1.2.5-1), FCT fellowships: (SFRH/BD/29257/2006, SFRH/BPD/25436/2005), Instituto Gulbenkian de CiĂȘncia, Universidade do Minho, ICBAS

    GWAS of epigenetic aging rates in blood reveals a critical role for TERT.

    Get PDF
    DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) paradoxically confer higher IEAA (P < 2.7 × 10-11). Causal modeling indicates TERT-specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening
    • 

    corecore