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Abstract
1.	 Globally,	billions	of	dollars	are	invested	each	year	to	help	understand	the	dynam-
ics	of	social	ecological	systems	(SES)	in	bettering	both	social	and	environmental	
outcomes.	However,	there	is	no	scientific	consensus	on	which	aspect	of	an	SES	is	
most important and urgent to understand; particularly given the realities of lim-
ited time and money.

2.	 Here	we	use	a	simulation‐based	“value	of	information”	approach	to	examine	where	
research will deliver the most important information for environmental manage-
ment	in	four	SESs	representing	a	range	of	real‐life	environmental	issues.

3. We find that neither social nor ecological information is consistently the most im-
portant:	instead,	researchers	should	focus	on	understanding	the	primary	effects	
of their management actions.

4.	 Thus,	when	managers	are	undertaking	social	actions	the	highest	research	prior-
ity	should	be	understanding	 the	dynamics	of	social	groups.	Alternatively,	when	
manipulating ecological systems it will be most important to quantify ecological 
population dynamics.

5. Synthesis and applications. Our results provide a standard assessment to deter-
mine	the	uncertain	social	ecological	 systems	 (SES)	component	with	 the	highest	
expected	 impact	 for	management	outcomes.	 First,	managers	 should	 determine	
the	structure	of	their	SES	by	identifying	social	and	ecological	nodes.	Second,	man-
agers	should	identify	the	qualitative	nature	of	the	network,	by	determining	which	
nodes	 are	 linked,	 but	 not	 the	 strength	 of	 those	 interactions.	 Finally,	managers	
should	identify	the	actions	available	to	them	to	intervene	in	the	SES.	From	these	
steps,	managers	will	be	able	to	identify	the	SES	components	that	are	closest	to	the	
management	action(s),	and	it	is	these	nodes	and	interactions	that	should	receive	
priority research attention to achieve effective environmental decision making.
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1  | INTRODUC TION

Between	2001	 and	2008,	 annual	 global	 spending	 on	 environmen-
tal	management	was	close	 to	US$20	billion	 (Waldron	et	al.,	2013).	
Traditionally,	the	focus	of	this	spending	has	been	on	developing	an	
understanding	 of	 ecosystems	 or	 single	 species	 (McRae,	 Dickson,	
Keitt,	 &	 Shah,	 2008;	 Simberloff,	 2003).	 This	 narrow	 research	 ap-
proach	has	delivered	mixed	benefits	because	it	omits	relevant	wider	
system	dynamics	(Liu	et	al.,	2007).	For	example,	the	Convention	on	
International	Trade	in	Endangered	Species	of	Wild	Fauna	and	Flora	
(CITES)	has	often	neglected	the	social	motivations	and	pressures	that	
drive	the	endangered	species	trade,	and	this	has	contributed	to	 its	
failure	to	protect	many	species	(Lenzen	et	al.,	2012;	Wolch	&	Emel,	
1998).	Equally,	many	marine	protected	area	networks	are	designed	
on purely biological grounds despite their long-term success being 
heavily affected by social factors such as social acceptability and fi-
nancial	capacity	(Christie,	2004;	Gill	et	al.,	2017;	Mascia	et	al.,	2003).

To	improve	management	outcomes,	the	characteristics	and	dy-
namics	of	the	wider	social	ecological	system	(SES)	are	receiving	in-
creasing	 research	attention	 (Bodin,	2017).	However,	 the	dynamics	
of	these	coupled	SES	systems—how	social	actors	interact	over	time,	
and the connections between and within social and ecological pro-
cesses—create	additional	dimensions	of	uncertainty	for	environmen-
tal	managers	(Ostrom,	Burger,	Field,	Norgaard,	&	Policansky,	1999).	
Research can improve managers’ understanding of these more com-
plex	SES	models,	but	this	requires	funding,	and	can	delay	manage-
ment	 that	 is	 often	urgently	 needed.	 For	 example,	 next	 to	nothing	
was	 known	 about	 the	 “extinct”	 Australian	 night	 parrot	 Pezoporus 
occidentalis,	which	was	rediscovered	in	2013	(Pyke	&	Ehrlich,	2014).	
Five	years	later,	and	despite	numerous	programs	of	research,	man-
agers	are	still	 far	 from	understanding	how	to	protect	 it	 (Leseberg,	
nd;	Pyke	&	Ehrlich,	2014).	Furthermore,	under	economic	constraints,	
increasing investment in ecological research may come at the cost 
of	reduced	investment	in	social	research	and	vice	versa.	Therefore,	
knowledge acquisition must be prioritised based on an evaluation 
of	its	expected	benefits	and	costs	(Canessa	et	al.,	2015;	Grantham	
et	 al.,	 2008;	Grantham,	Wilson,	Moilanen,	 Rebelo,	 &	 Possingham,	
2009;	Li	et	al.,	2017;	Runge,	Converse,	&	Lyons,	2011).

To	improve	environmental	management	outcomes,	a	crucial	re-
search	question	 is—what	 is	the	value	of	knowing	more	about	each	
component	 (hereafter	 “uncertain	 system	 component”)	 of	 coupled	
SES?	We	apply	a	simulation‐based	version	of	formal	“value	of	infor-
mation”	theory	(Raiffa	&	Schlaifer,	1961)	to	calculate	the	expected	
value	 of	 perfect	 information	 regarding	 each	 uncertain	 SES	 com-
ponent	 (EVPXI,	where	X	 is	each	uncertain	SES	component)	 (sensu	
Yokota	&	Thompson,	2004).	We	then	calculate	which	information—
social	or	ecological—will	deliver	the	greatest	 improvement	 in	man-
agement outcomes.

Within	the	broad	field	of	environmental	management,	different	
disciplines have argued for research effort to be concentrated on 
different	system	elements.	For	example,	environmental	research	has	
traditionally focused on understanding uncertain ecological system 

components	 (Chadès	et	al.,	2011).	Meanwhile,	both	environmental	
and social fields of research have debated whether research effort 
should focus on understanding the dynamics of either nodes (e.g. 
the	management	functions	of	social	actors;	Marín	&	Berkes,	2010)	or	
interactions	(e.g.	ecological	processes	such	as	connectivity;	Pulliam,	
1988;	Urban	&	Keitt,	2001),	with	 few	studies	contrasting	 the	 two	
(Sanchirico	&	Wilen,	 1999).	Other	 approaches,	 such	 as	 structured	
decision	 making	 (e.g.	 Martin,	 Runge,	 Nichols,	 Lubow,	 &	 Kendall,	
2009),	highlight	the	importance	of	understanding	and	clearly	defin-
ing management objectives; as opposed to system dynamics. Our 
contribution	 in	 this	 research	compares	each	of	 these	options,	 and	
particularly focuses on the relative value of gathering ecological ver-
sus social information. We also assess whether it is more important 
to research the system components that managers are aiming to 
change	 (i.e.,	 their	objectives),	or	 the	system	components	that	they	
plan to act upon.

We	construct	a	general	model	of	an	SES	that	is	simple	enough	
to	 be	 analytically	 tractable,	 while	 also	 containing	 all	 the	 funda-
mental	elements	of	an	SES	(Bodin	&	Tengö,	2012)	 (see	Figure	1).	
Our system construction builds on recent research proposing 
network	 ‘motifs’—simplified,	but	non‐trivial	patterns	of	 intercon-
nections	 (Bodin	 &	 Tengö,	 2012),	 which	 can	 be	 described	 as	 the	
basic	building	blocks	of	most	networks	(Milo	et	al.,	2002).	To	dis-
cover	which	 information	 is	most	 valuable,	 we	 consider	 four	 dif-
ferent	management	 problems—two	 from	 fisheries	 and	 two	 from	
sustainable	agriculture	(Figure	2).	We	designed	our	four	problems	
to investigate the influence of all permutations of action and man-
agement	objectives	on	research	priorities	 (Figure	2).	To	give	two	

F I G U R E  1   Stylised representation of our social ecological 
system	(SES)	network	structure.	This	structure	has	two	social	
groups (nodes S1 & S2)	who	interact	with	two	ecological	populations	
(nodes E1 & E2).	Arrows	indicate	the	direction	of	potential	
interactions between social groups and ecological populations. 
These dynamics are determined by the behaviour of both the nodes 
and	interactions,	including	the	social	ecological	interactions	that	
couple the social and ecological systems
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examples	of	these	permutations:	‘what	is	the	most	important	ele-
ment	of	an	SES	to	understand	when	managers	are	intervening	in	a	
social	system	to	achieve	an	ecological	outcome?’	And:	‘what	is	the	

most	important	element	of	an	SES	to	understand	when	managers	
are intervening in an ecological system to achieve an ecological 
outcome?’

F I G U R E  2  Four	different	environmental	management	problems	with	different	management	actions	and	objectives	(see	Figure	1	
for	description	of	each	uncertain	social	ecological	system	component).	Image	credits:	Saxby,	T.;	Mulloway,	D.T.;	Nastase,	E.;	Hawkey,	J.;	
Integration	and	Application	Network,	University	of	Maryland	Center	for	Environmental	Science	(ian.umces.edu/imagelibrary)
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2  | MATERIAL S AND METHODS

2.1 | Overview of analyses

Our	aim	is	to	determine	the	relative	expected	value	of	different	types	
of	 information	in	socio‐ecological	systems	(SESs),	to	guide	research	
to	inform	management	actions.	We	explore	this	question	using	four	
SESs	with	different	management	objectives	and	actions	(see	Figure	2).	
We	frame	these	questions	using	network	theory	(note,	however,	that	
we	do	not	perform	any	network	analysis).	Below,	we	provide	a	brief	
overview	of	value	of	information	theory	before	describing	our	SESs	
in more detail and then providing details of the modelling approach.

2.2 | Value of information

Before	commencing	a	management	project,	managers	must	decide	
whether	to	reduce	uncertainty	in	a	given	aspect	of	the	system	(i.e.,	
to learn about Ixy,	qx,	Hx,	Cxy or rx).	We	measure	the	expected	value	of	
information as the improvement in an outcome when particular in-
formation	is	known	with	certainty,	compared	to	when	that	informa-
tion	is	unknown	(Canessa	et	al.,	2015;	Runge	et	al.,	2011).	We	define	
the	 value	 of	 information	 following	Raiffa	 and	 Schlaifer	 (1961)	 and	
Yet,	Constantinou,	Fenton,	and	Neil	(2018).	Our	SES	model	consists	
of a set of possible management actions A	and	a	set	of	uncertain	SES	
parameters � with joint probability distribution P(�).	For	each	man-
agement action a ∈ A the model aims to predict the utility of a de-
noted by U(a,	�).	The	expected	utility	of	each	management	action	a is

If	the	value	of	the	SES	parameters	is	unknown,	we	can	calculate	
the	expected	utility	of	each	management	action	and	identify	which	
action a	 yields	 the	 highest	 expected	 utility	 (Yokota	 &	 Thompson,	
2004),	that	is:

Alternatively,	if	it	were	possible	to	gather	perfect	information	
about	all	uncertain	SES	parameters,	 then	managers	could	 select	
the	action	that	would	maximise	the	value	of	the	management	out-
come.	Expected	utility	under	this	 ‘perfect	 information’	setting	 is	
given by:

The	difference	between	maximum	expected	utility	with	perfect	
information	(Equation	3)	and	maximum	expected	utility	(Equation	2)	
is	the	expected	value	of	perfect	information	(EVPI):

In	our	research	setting,	we	are	interested	in	understanding	the	value	
of	 information	 for	 individual	 SES	 parameters	 to	 improve	manage-
ment	outcomes.	We	therefore	calculate	the	expected	value	of	per-
fect	information	on	‘X’	(EVPXI).	EVPXI	is	the	difference	in	expected	
utility	of	an	optimal	action	taken	when	the	exact	value	of	an	uncer-
tain model input (�x)	 is	known	(Equation	5)	compared	to	one	taken	

knowing	only	prior	 information	 (Equation	2)	 (Yokota	&	Thompson,	
2004).	We	illustrate	this	case	with	the	following	example.	Consider	a	
division	of	our	uncertain	SES	parameters	into	parameter	of	interest	�
x,	and	the	rest	of	the	parameters	�−x.	The	expected	benefit	if	we	have	
perfect information about �x is:

That	 is,	 we	 are	 only	 calculating	 the	 expectation	 over	 the	 un-
known parameter values of �−x,	given	the	value	of	�x. This formula-
tion	allows	us	to	define	EVPXI	as	follows:

Essentially,	EVPXI	measures	the	relative	benefits	of	resolving	un-
certainty	 in	any	one	particular	uncertain	parameter,	e.g.	ecological	
or social nodes.

2.3 | Systems overview

Our	 four	 SESs	 exhaustively	 describe	 potential	 management	 ac-
tions	and	objectives	for	a	very	simple	SES	network	motif.	We	rep-
licate	the	finite	set	of	motifs	described	in	Bodin	and	Tengö	(2012)	
by replicating the basic network structure (two social and two 
ecological	 nodes),	 and	 assuming	 uncertain	 priors—which	 allows	
us	to	assess	the	expected	value	of	information	(described	above)	
across all parameters. We intend for our results and conclusions 
to	be	as	generalizable	as	possible;	hence,	 the	system	models	we	
employ	are	as	generic	as	possible	(see	Appendix	S1	for	a	detailed	
description	of	objectives).	Managers	engage	with	nodes	as	this	is	
the	most	commonly	observed	management	intervention,	e.g.	pay-
ments	 for	 environmental	 services	 (Ferraro	 &	 Kiss,	 2002),	 or	 re-
stocking	wild	populations	(Aprahamian,	Martin	Smith,	McGinnity,	
McKelvey,	&	Taylor,	2003).	This	means	that	we	are	not	considering	
systems	where	managers	act	on	 interactions.	Thus,	 for	example,	
a	manager	might	revegetate	an	ecological	habitat	patch,	but	they	
would	not	revegetate	linear	habitat	to	improve	dispersal	(Jellinek,	
Parris,	 McCarthy,	 Wintle,	 &	 Driscoll,	 2014).	 The	 fundamental	
components	 of	 each	 system	model	 are	 (a)	 a	 discrete‐time,	 con-
tinuous‐state	model	of	the	ecological	dynamics;	(b)	a	management	
objective	function;	and	(c)	a	discrete‐time,	discrete‐state	model	of	
the	 social	 dynamics,	 based	on	 the	 influence	of	 the	management	
action.	Below,	we	outline	these	components	for	each	of	the	four	
systems we consider. The range of uncertainty considered in each 
parameter is described in Table 1.

2.4 | System 1

Management problem 1 is based on a territorial use rights fishery 
(Wilen,	 Cancino,	 &	Uchida,	 2012).	 There	 are	 two	 fishing	 groups	
(S1 and S2)	 and	 two	 fishery	populations	 (E1 and E2).	 Each	 fishing	
group	harvests	their	own	fishery	(0	≤	H1 & H2	≤	0.4,	see	Table	1).	
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The fishery populations grow logistically with growth rates r1 and 
r2,	 and	 there	 is	 dispersal	 between	 the	 populations	 that	 is	 likely	
asymmetric	(0	≤	C12 & C21	≤	1).	An	environmental	manager	is	act-
ing	in	the	system,	and	their	goal	is	to	maximise	the	equilibrium	size	
of	 the	harvested	 fishery,	 even	 if	 this	 reduces	yields.	They	might	
associate a higher stock abundance with superior ecosystem func-
tioning or believe that it makes the stock better-equipped to deal 
with	environmental	change.	To	achieve	their	objective,	managers	
intervene in one of the two social groups to encourage or incen-
tivise a permanent harvest reduction of D	 =	 0.25.	Variations	 on	
this management setting have been observed around the globe. 
For	 example,	 in	Chile,	 a	 co‐management	 program	was	 instituted	
to	stimulate	the	recovery	of	shellfish	populations.	As	in	our	exam-
ple,	fishers	in	Chile	voluntarily	participate	in	observing	catch	limits	
(Castilla	&	Defeo,	2001).	Community	based	fisheries	management	
also	features	in	Japan,	where	fishing	rights	apply	to	the	entire	sea	
area	adjacent	to	a	given	fishing	village	(Yamamoto,	1995).

2.4.1 | Ecological dynamics

The abundance of the fishery population at patch j at time t is de-
noted Ej,t and changes through time as:

Since	 we	 are	 interested	 in	 long‐term	 outcomes,	 we	 calculate	
and use the system equilibrium: the vector of E∗

j
 values where all 

Ej,t+1=Ej,t=E∗
j
.

The growth rates rj drive increases in abundance. The stocks are 
demographically linked by the dispersal parameters (Cjg),	which	denote	
the	proportional	exchange	of	 individuals.	For	example,	C12 describes 
the proportion of adult fish who move from ecological population 1 to 
ecological population 2. The harvest terms (Hi)	indicate	the	proportion	
of the adult population removed from each population by social group 
i each time step. We constrained the value of Hi between 0 and 0.4 to 
limit	catches	below	the	maximum	sustainable	yield	(Punt,	Smith,	Smith,	
Tuck,	&	Klaer,	2014)	(see	Table	1),	as	the	system	would	otherwise	not	

contain a persistent population. These harvest parameters connect the 
social	groups	with	the	ecological	populations,	and	therefore	encapsu-
late the social ecological interactions. The binary variable up,k	=	 {0,1}	
describes	the	influence	of	management,	as	described	below.

2.4.2 | Management objective

In	system	1,	managers	aim	to	engage	the	social	system	to	achieve	an	
ecological	objective—maximise	the	equilibrium	size	of	the	ecological	
metapopulation:

To	do	so,	managers	must	choose	to	intervene	with	social	group	
one (a	=	1),	or	group	two	(a	=	0).	The	time	and	resources	required	
for the managers to intervene mean that only one group can be 
targeted.	As	we	outline	below,	the	dynamics	of	the	SES	are	proba-
bilistic,	depending	on	the	response	of	the	social	groups	to	the	man-
agement intervention. Managers are therefore actually attempting 
to	maximise	the	expected	value.

2.4.3 | Social dynamics in response to management

The state of the social system is described by the vector up,	where	
p	=	{1,	2,	3,	4},	whose	binary	elements	uk	=	{0,1}	describe	whether	
group k engages in the environmental action. The values of up are 
determined by the management action A,	which	(as	described	above)	
denotes whether the managers engage with group one (a	 =	 1)	 or	
group two (a	=	0).

We	model	engagement	as	a	random	process,	where	each	social	
group has a probability qi of engaging with a management interven-
tion	targeted	at	that	group.	For	example,	in	this	SES,	if	the	managers	
choose to engage with social group one by choosing a	=	1,	then	that	
group	will	undertake	the	desired	action	(reducing	their	harvest	rate)	
with probability q1.	Once	the	group	makes	its	decision,	it	may	influ-
ence	group	two	to	similarly	engage,	with	probability	 I12. This influ-
ence	network	is	characterised	by	the	matrix	I:

(7)Ej(t+1) =Ej(t) + rjEj(t)
(
1−Ej(t)

)
−CjgEj(t) −

(
1−Dup,k

)
HiEj(t) +CgjEg(t)

(8)max
A={0,1}

B=E∗
1
+E∗

2

TA B L E  1   Description of social ecological parameter assessed in the value of information analysis

Parameter Range Description Network
Node or 
interaction

r 0.2	≤	r	≤	2 Growth rate of ecological population Ecological Node

C 0	≤	C	≤	1 Connectivity between ecological 
populations

Ecological Interaction

H 0	≤	H	≤	0.4 Harvest of ecological population by social 
nodes

Social ecological Interaction

q 0	≤	q	≤	1 Willingness to engage with management Social Node

I 0	≤	I	≤	1 Influence of one social node on another Social Interaction

Other parameters     

D 0.25 Management intervention impact   

M 0.25 Management addition or removal of ecologi-
cal population
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The willingness of each group to engage (qi),	 therefore	defines	
the	dynamics	of	 the	 social	nodes,	 and	 the	 inter‐group	 influence	 Iif 
defines the dynamics of the network.

Given a particular management action a ∈ A,	the	response	of	the	
communities is defined by a discrete probability distribution over up:

Thus,	to	calculate	the	expected	performance	of	the	SES	given	a	
particular management action a,	we	calculate	B as a function of all up,	
weighted	probabilistically	using	Equations	10–13:

We assume that the management action carries either no net 
cost	for	the	group	(either	has	no	cost,	or	is	subsidised	by	the	man-
ager),	 or	 generates	 positive	 benefits,	 but	 that	 the	 groups	will	 not	
instigate this action without management intervention. This could 
be because the groups are unaware of the benefits (assuming they 
exist),	 are	 reluctant	 to	 instigate	 the	action,	or	 lack	 the	capacity	 to	
begin	implementation	(Pannell	et	al.,	2006).

2.5 | System 2

The	management	setting	for	system	2	is	a	recreational	fishery,	where	
managers	are	planning	on	restocking	a	salmon	population.	In	practice,	
this	can	occur	because	managers	want	to	(a)	facilitate	colonization	of	
new	habitats;	(b)	restore	spawning	biomass	in	severely	depleted	popu-
lations,	(c)	compensate	for	major	environmental	disturbances	such	as	
hydroelectric	development,	or	 (d)	augment	an	existing	fishery	to	en-
able	larger	catches	(Ritter,	1997;	Ward,	2006).	For	example,	in	Florida	
in	the	USA,	saltwater	recreational	fishing	is	a	multi‐billion	dollar	(US)	
industry,	and	fish	stocking	is	used	to	restore	depleted	stocks	(Tringali	
et	al.,	2008).	In	our	system	example	there	are	two	salmon	populations	
(E1 & E2)	and	two	recreational	fisher	groups	(S1 & S2).	Each	recreational	
fisher group fishes in their own salmon fishery (H1 & H2).	The	man-
agement action is to intervene in the ecological system by restocking 
salmon by M	=	0.25	in	one	of	the	populations.	Note	that,	once	again,	
this is a permanent intervention and implies managers will commit to 
an	annual	 restocking	 rate	of	0.25.	As	with	 the	previous	system,	 the	
management objective is ecological: maximise the equilibrium salmon 
metapopulation	(Equation	15).	Due	to	resource	constraints,	managers	
can only choose one population to restock. In response to the man-
agement	action,	the	recreational	fisher	groups	may	choose	(with	prob-
ability q1 & q2)	to	increase their salmon harvest by D; undermining the 
management	objective.	If	managers	restock	their	salmon	population,	
that fisher group may encourage the other fisher group to also increase 
their salmon harvest with probability Iif.	The	structure	of	 the	SES	 in	
system	2	is	the	same	as	in	system	1,	however,	instead	of	a	social	inter-
vention,	the	managers	intervene	in	the	system	through	the	ecological	
populations. The differences in the dynamics of system 2 relative to 
system 1 are outlined below.

The ecological dynamics in system 2 account for the restocking 
of the ecological population by managers. If managers restock eco-
logical population Ej,	then	group	Si will respond by increasing their 
harvest with probability qi,	 rather	than	decreasing	 it.	The	discrete	
probability distribution for action vector up,	p	=	{1,	2,	…,	6}	whose	
binary elements uk	 =	 {0,	 1}	 describe	whether	 group	 k engages in 
the environmental action and depends on the management action 
are as follows:
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F I G U R E  3   Illustration	of	the	calculation	of	the	Gini	Coefficient,	
which assesses the proportion of the total ecological population 
which occurs in ecological node 1 relative to ecological node 2. 
Red	line	describes	the	Lorenz	curve,	blue	line	describes	the	line	of	
equality.	In	this	example,	ecological	node	1	(50%	of	population)	has	
25%	of	the	total	ecological	metapopulation
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2.6 | System 3

System 3 is an agricultural production system where a biologi-
cal pest (E1 & E2)	 negatively	 affects	 the	 utilities	 of	 two	 farmers	
(S1 & S2)	(Silverstein,	1981).	Previous	studies	have	estimated	that	
pests	and	diseases	lower	crop	production	by	30%–40%	(Thomas,	
1999).	To	control	agricultural	pests,	managers	often	try	to	encour-
age	farmers	to	adopt	 integrated	pest	management	practices,	 for	
example,	 biopesticides	or	 resistant	 cultivars	 (Parsa	et	 al.,	 2014).	
In	our	system,	social	ecological	 interactions	occur	when	farmers	
manage	(remove)	the	pest	population	located	on	their	farm	(H1 & 
H2).	The	objective	of	managers	is	to	equitably	maximise the utility 
of farmers; they intervene in the system by reducing one of the 
biological pest populations by M	 =	 0.25.	 Farmers	 respond	 (with	
probability q1 & q2)	to	that	action	by	decreasing (by D)	their	own	ef-
forts	to	remove	the	pest	population.	Similar	to	a	study	by	Baggio	
and	Hillis	(2018),	we	assume	that	farmers	will	make	their	manage-
ment decision based on information they acquire from their social 
network. This influence of one farmer to encourage a reduction 
in removal effort by the other is controlled by I. The social objec-
tive	is	assessed	by	how	much	the	pest	populations	are	minimised,	
modified by the difference between the outcomes for the two 
farmers; it reflects both the negative impact of the pest popula-
tions	on	the	farmers’	productivity,	and	a	preference	for	equitable	
engagement in environmental management.

The	 structure	of	 the	SES	 in	 system	3	 is	 largely	 the	 same	as	 in	
systems	1	and	2.	 In	system	3,	however,	 there	 is	a	social	objective,	
and managers intervene in the ecological system by removing a pro-
portion M of the ecological population in node E1 or E2. If managers 
reduce the biological pest population Ej,	then	group	Si will respond 
by decreasing their own removal with probability qi,	rather	than	in-
creasing it

.

Farmers’	utility	is	measured	as	a	composite	of	the	inverse	size	of	
the	pest	metapopulation	(assessed	at	equilibrium,	E∗

j
),	and	a	Gini	co-

efficient	(Dorfman,	1979)	which	indicates	how	equally	the	two	pop-
ulations	are	reduced.	To	maximise	social	utility	the	pest	populations	
would need to be removed completely on both farms. The system 
was	assessed	as	in	Equation	23.

The Gini coefficient (G)	 (Dorfman,	1979)	 (see	Equation	24	 and	
Figure	 3)	 was	 calculated	 by	 assessing	 the	 proportion	 of	 the	 total	
ecological population (τ + ψ)	which	occurred	in	ecological	node	1	(τ)	
relative to ecological node 2 (ψ).

The discrete probability distribution for management vector up is as 
described in system 2.

2.7 | System 4

System	4	 is	based	on	a	non‐timber	 forestry	products	 (NTFP)	ex-
traction	system.	NTFP	harvest	has	been	shown	to	affect	ecological	
processes	 (Ticktin,	2004),	 including	 forest	structure	and	compo-
sition	 (Ndangalasi,	 Bitariho,	 &	 Dovie,	 2007).	 However,	 commer-
cial	NTFP	harvest	has	been	promoted	as	a	conservation	strategy	
because it offers local rural people with economic alternatives to 
destructive	land	uses	such	as	logging	and	cattle	ranching	(Ticktin,	
2004).	This	 is	 the	management	 setting	 in	which	we	base	system	
4.	 In	 this	 system,	 two	 social	 groups	 (S1 & S2)	 can	 extract	 NTFP	
from their local forest (E1 & E2)	or	convert	the	land	to	agriculture	
by clearing the forest (H1 & H2)	(Chopra,	1993).	The	management	
action	is	social—managers	offer	incentives	to	social	groups	to	de‐
crease land clearing for agriculture (by D),	and	the	objective	is	so-
cial—to	equitably	maximise the communities’ utility by increasing 
non‐timber	forest	products	(through	increasing	the	size	of	the	for-
est	patches).	Groups	will	engage	with	managers—decreasing	their	
land	 clearing—with	 probability	 qi,	 and	 influence	 the	 other	 social	
group to similarly engage with probability Iif.	Note	that	in	this	sys-
tem,	social	 interactions	can	amplify	 the	benefits	of	 intervention,	
while in the pest management system social interactions could re-
duce the benefits of an intervention.

The ecological dynamics are the same as specified in system 
1. The social objective was assessed as specified in system 3 
(Equation	 23),	 except	 that	 these	managers	 seek	 to	 equitably	 in-
crease	 the	 equilibrium	 forest	metapopulation,	while	 the	manag-
ers in system 3 sought to equitably reduce the pest population. 
The discrete probability distribution for this action vector up is the 
same as in system 1.

2.8 | Model discretisation

We	conducted	two	EVPXI	analyses	(described	in	Section	2.2)	in	each	
of	 our	 four	 SES.	 In	 the	 first	 analysis	we	 individually	 assessed	 the	
EVPXI	of	each	of	the	individual	five	uncertain	model	inputs	Ixy,	qx,	rx,	
Cxy and Hx.	In	the	second	analysis	we	assessed	the	EVPXI	of	pairs	of	
uncertain	model	parameters,	grouped	according	to	their	character:	
the social inputs (Ixy and qx),	the	ecological	inputs	(Cxy and rx),	and	the	
socio-ecological inputs (Hx).	The	parameterisation	of	these	inputs	is	
described in Table 1.

To	 individually	 assess	 the	 relative	 expected	 value	 of	 each	 of	
our	five	uncertain	model	inputs,	we	defined	each	uncertain	model	
input of interest �x,	x	=	{1,	2,	…,	5}.	Each	�x input comprises two pa-
rameters	(because	there	are	two	values	for	each	uncertain	input,	
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e.g. I12 and I21; or q1 and q2).	 Each	 input	 has	 a	 discrete,	 uniform	
distribution,	which	samples	the	full	range	of	possible	input	values	
at n equally spaced intervals. This creates n2 discrete combinations 
(e.g. combinations of n values of I12 and I21).	We	then	specified	b 
replications	of	the	other	uncertain	model	inputs,	�−x,	−x ∈	{1,	2,	…,	
10}.	Using	random	number	setting	“twister”	in	Matlab,	we	gener-
ated a b × �−x	matrix	of	all	other	parameter	values.	We	then	created	
a b × �−x	matrix	for	each	of	the	n2	combinations	to	give	a	matrix	of	
dimensions n2 × b × �−x.	Each	row	vector	of	this	replicated	matrix	
provides a unique value for each �−x	(other	uncertain	model	input)	
for each combination of �x (the values for the uncertain model 
input	of	interest).	The	two	specifications,	n and b,	define	the	com-
putational intensity of our analysis. We were able to run the anal-
yses for n = 15 and b	=	75,	replicated	20	times.

The ecological model was run to equilibrium for each combina-
tion of �x and �−x	(1,…,	bn2),	each	management	intervention	a,	where	
a ∈ A	 =	 {1,0}	 depending	on	whether	managers	 intervene	 at	 social	
or	 ecological	 node	1	or	 2	 respectively,	 and	 each	possible	 state	 of	
the social system. The state of the social system is described by ac-
tion vector up	and	as	previously	described,	is	partially	determined	by	
the initial management decision (A),	 and	partially	by	 the	dynamics	
of	 the	 social	 system.	For	example,	 in	 system	1,	 if	both	groups	are	
persuaded	to	take	action	(the	first	through	direct	engagement,	the	
second	through	the	adoption	and	influence	of	the	first),	the	action	
vector will be u	 =	 [1,1].	The	 size	of	 the	ecological	metapopulation	
at equilibrium under each model discretisation and possible state of 
the social system up	was	used	to	calculate	EVPXI	as	described	previ-
ously.	The	characteristics	of	each	of	our	four	SESs	will	determine	the	
potential	for	management	actions	to	affect	expected	utility—as	the	
characteristics	of	each	system	are	different,	the	magnitude	by	which	
expected	utility	can	improve	is	not	constant	across	our	systems.	To	
be	 able	 to	 compare	 the	 value	 of	 information	 across	 our	 systems,	
we	standardised	EVPXI	by	the	maximum	observed	metapopulation	
across all discretisations (n)	and	replications	(b)	for	each	system.

3  | RESULTS

We	evaluated	the	EVPXI	of	each	type	of	social	ecological	informa-
tion	in	four	SES	with	different	management	actions	and	objectives	
(Figure	 2).	 Systems	 1	 and	 2	 are	 fisheries	 examples;	 in	 both	 cases	
managers	 have	 an	 ecological	 objective,	 but	 in	 system	1	managers	
influence the network through the social group while in system 2 
managers influence the network through the ecological population. 
Systems	 3	 and	 4	 are	 sustainable	 agriculture	 examples.	 Managers	
pursue	social	(primarily	economic)	objectives—in	system	3	they	un-
dertake	a	social	action,	while	in	system	4	they	undertake	an	ecologi-
cal action.

Our	 EVPXI	 analyses	 showed	 that	 neither	 ecological	 nor	 social	
information is inherently more valuable for management: social in-
formation	 is	most	valuable	 in	 systems	1	and	4	 (Figure	4),	 and	eco-
logical information is most valuable in systems 2 and 3. Regardless 
of	 the	 SES	 model,	 action	 or	 management	 objective,	 the	 highest	

F I G U R E  4  Expected	value	of	partial	information,	or	perfect	
information	regarding	X	(EVPXI,	where	X	is	an	uncertain	social	
ecological	system	model	component),	in	four	social	ecological	systems	
(see	Figure	2).	Social	uncertain	components:	q is willingness of a 
social	group	to	participate	in	management,	I is the influence of one 
social	group	on	the	other;	Ecological	uncertain	components:	r is the 
ecological population growth rate; C is ecological connectivity; Social 
ecological uncertain components: H is the interaction of social groups 
with	ecological	populations.	Error	bars	describe	upper	and	lower	
quartiles.	When	interpreting	the	relative	value	of	information,	note	
that	the	ranking	past	the	first	EVPXI	is	uninformative.	Subsequent	
rankings	would	require	the	re‐evaluation	of	subsequent	EVPXIs	once	
the	first	EVPXI	has	been	addressed
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value of information was consistently associated with the uncertain 
component that was most directly affected by the management ac-
tion	(Figure	4).	For	example,	managers	intervene	in	the	social	nodes	
in	problems	1	and	4	(Figure	2,	left	column),	and	it	is	therefore	most	
important to understand each group's willingness to engage with 
managers (social node component q).	 In	 problems	 2	 and	 3,	 where	
managers	engage	the	SES	through	the	ecological	nodes,	the	highest	
EVPXI	concerns	the	growth	rate	of	the	salmon	populations	(ecological	
node component r),	and	the	connectivity	between	the	two	invasive	
species’ populations (ecological interaction component C).	A	sensitiv-
ity	analysis	of	fixed	parameters	M and D confirmed that results are 
robust	to	changes	in	these	parameter	values	(see	Appendix	S2).

4  | DISCUSSION

This is the first evaluation of the value of information in a dynamic 
SES	 network.	Our	 results	 can	 be	 summarised	 as:	 ‘learn	 about	 the	
system‐lever	that	you	plan	to	pull’.	Although	intuitive,	our	results	are	
at	odds	with	current,	widespread	research	practices:	not	to	consider	
management	actions	(or	even,	necessarily,	objectives)	when	deciding	
where	to	prioritise	research	effort.	For	example,	research	effort	into	
the aforementioned night parrot first concentrated on improving 
understanding	of	the	bird's	biology	(Pyke	&	Ehrlich,	2014),	without	
reference to specific management actions that might make use of 
such information.

Neither	 the	 social	 nor	 ecological	 components	 in	 our	 analysis	
consistently displayed a higher value of information. Their relative 
importance depended on which was being targeted by management 
actions.	 This	 result	 can	 be	 explained	 by	 the	 conditional	 nature	 of	
information.	 For	 example,	 in	 our	 first	 fishery	 problem	 (System	 1),	
the management action involves engaging with a fishing group to 
reduce harvests. Only if engagement is successful (with probability 
qx),	can	the	effects	spread	to	the	non‐engaged	fishing	group	 (with	
probability Ixy).	This	 latter	process	of	 social	 influence	 (Ixy)	will	only	
ever be relevant if the initial group engages with the managers (qx),	
and Ixy	 is	therefore	only	conditionally	 important.	By	a	similar	argu-
ment,	 the	 socio‐ecological	 connection	 (Hx)	 is	 also	 irrelevant	 if	 the	
intervention	 fails.	 The	 highest	 EVPXI	 is	 therefore	 associated	with	
qx,	not	Ixy or Hx.	If	the	initial	action	fails,	then	the	process	by	which	
interventions propagate through the social network (its secondary 
impact)	is	not	important.	The	more	distant	the	parameter	from	the	
point	of	intervention,	the	lower	its	EVPXI.	In	general,	this	means	that	
when	management	actions	are	social,	then	the	highest	EVPXI	will	be	
social;	when	management	actions	are	ecological,	the	highest	EVPXI	
will be ecological.

Unlike	 previous	 analyses	 that	 focused	 on	 the	 value	 of	 infor-
mation in social or ecological systems in isolation from each other 
(Barnes,	Lynham,	Kalberg,	&	Leung,	2016;	Chadès	et	al.,	2011),	our	
approach	considers	research	priorities	in	a	coupled	SES.	This	explicit	
comparison allows us to conclude that neither social nor ecological 
information	is	more	important	than	the	other	per	se.	Thus,	contrary	
to	 a	 historical	 focus	 on	 environmental	 information	 (Clarke,	 1995;	

Fahrig	&	Merriam,	 1994;	Noss,	 1990),	 and	 a	more	 recent	 push	 to	
consider	social	information	(Dickman,	2010;	Mascia	et	al.,	2003);	en-
vironmental managers need to understand the actions available to 
them before they can identify which information to prioritise.

Surprisingly,	 system	 components	 closest	 to	 the	management	
objective were not as important as system components closest 
to	the	management	action.	This	 result	suggests	 that,	while	man-
agement	objectives	may	change,	the	relative	value	of	information	
remains	intrinsic	to	the	management	action.	The	fact	that	EVPXI	is	
not highest for those components close to management objectives 
contrasts	 with	 the	 focus	 of	 structured	 decision‐making,	 which	
places	primary	emphasis	on	determining	management	objectives,	
e.g.	the	goals	of	stakeholders	(Martin	et	al.,	2009).	We	do	not	see	
this	as	a	disagreement,	since	the	goals	of	structured	decision‐mak-
ing are much broader than simply evaluating the value of particular 
forms	of	information.	Moreover,	our	conditional‐importance	inter-
pretation	presumably	means	that	highest	EVPXI	will	be	associated	
with those parameters that link management actions with man-
agement	objectives,	and	that	parameters	which	are	only	indirectly	
linked	should	have	low	(or	zero)	EVPXI.	Our	analyses	are	not	suffi-
cient	to	observe	such	a	phenomenon,	since	the	networks	are	very	
small and most parameters directly link actions with objectives.

Our results can also be framed in terms of the primary versus 
secondary	impacts	of	policy—we	find	that	the	primary	effects	of	pol-
icy should be given first research priority. This finding is at odds with 
recent	research	in	the	field	of	economics,	which	has	focused	on	the	
secondary	impacts	of	policies,	for	example,	the	 ‘rebound	effect’	 in	
energy markets and ‘equilibrium sorting’ models in housing markets 
(Herring	&	Roy,	2007;	Kuminoff,	Smith,	&	Timmins,	2013).	Our	result	
has	further	relevance	for	policy	decisions,	as	technological	and	 lo-
gistical constraints will limit managers’ ability to change their actions 
in	the	short	term	(Cundiff,	Fike,	Parrish,	&	Alwang,	2009)	whereas	
policy	priorities	(objectives)	are	often	subject	to	greater	short‐term	
variability	(Rodríguez	et	al.,	2006).

On	average,	we	 find	 that	 the	 interactions	 in	SES	networks	are	
relatively unimportant because they represent secondary processes. 
Our findings are at odds with the perceived importance of ‘influence’ 
in	social	network	analysis,	as	a	specific	component	of	‘social	capital’	
(Lin,	1999).	In	our	analysis,	influence	(social	interaction,	I)	is	always	
secondary in importance to q,	which	determines	how	likely	a	social	
group	 is	 to	 engage	 in	 environmental	 management.	 Although	 our	
model	captures	the	essential	elements	of	a	connected	SES,	it	is	possi-
ble that the simple four-node geometry undervalues the importance 
of	connections.	In	particular,	large	interaction	networks	can	exhibit	
highly	nonlinear	dynamics	that	our	model	may	not	capture,	such	as	
the	percolation	threshold	observed	in	complex	networks	(Newman	
&	Watts,	1999).	Such	dynamics	could	dramatically	increase	the	value	
of	information	associated	with	interactions,	or	with	specific	parts	of	
the	interaction	network.	However,	our	results	suggest	that,	on	av-
erage,	information	on	interactions	would	still	be	less	important	than	
information on nodes. The value of information reflects its ability 
to	 alter	 management	 decisions.	 Because	 management	 will	 gener-
ally	alter	the	characteristics	of	the	nodes,	rather	than	interactions,	
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events at the first node will still have to occur for the large number of 
interactions	to	matter.	Moreover,	unless	we	assume	interactions	are	
all	 the	same	strength	 (a	strong	assumption),	each	must	be	 learned	
about	separately.	Therefore,	while	collectively	 interactions	may	be	
important,	individually	they	may	remain	of	secondary	importance—
even	in	complex	networks.

The lessons from our results can be generalised to other man-
aged	and	uncertain	SES.	We	summarise	these	lessons	as	a	standard	
assessment	for	managers	to	follow	to	determine	the	uncertain	SES	
component	 with	 the	 highest	 expected	 impact	 for	 management	
outcomes.	First,	managers	should	determine	the	structure	of	their	
SES,	by	identifying	social	and	ecological	nodes.	Second,	they	should	
identify	the	qualitative	nature	of	the	network,	by	determining	which	
nodes	are	linked,	but	not	the	strength	of	those	interactions.	Third,	
they	 should	 identify	 the	 actions	 available	 to	 them	 (the	managers)	
to	intervene	in	the	SES.	From	these	steps,	managers	will	be	able	to	
identify	 the	 SES	 components	 that	 are	 closest	 to	 the	management	
action(s),	and	it	is	these	nodes	and	interactions	that	should	receive	
priority research attention. This standardised assessment will be 
most	relevant	in	cases	with	‘simple’	SES	structures,	e.g.	systems	with	
limited nodes and interactions. We limited our analysis to a tractably 
small	SES	because	multi‐dimensional	value	of	 information	analysis	
is computationally intensive; our current analysis is already five-di-
mensional.	However,	the	general	interpretation	of	our	results	can	be	
extrapolated	to	inform	EVPXI	in	larger	systems	without	the	need	for	
a	 formal	value	of	 information	analysis—if	managers	 can	determine	
their available management actions and key system nodes. In the 
case	of	more	complex	SES,	 inferences	about	 the	EVPXI	of	 system	
components	may	still	be	possible	using	motifs	(Milo	et	al.,	2002).	If	
managers	 can	 identify	 dominant	motifs	 in	 their	 SES,	 these	motifs	
could	form	the	basis	of	an	EVPXI	assessment.

In	our	analysis	we	estimated	EVPXI.	As	with	previous	analyses	
(Costello	et	al.,	2010;	Johnson,	Jensen,	Madsen,	&	Williams,	2014;	
Runge	et	al.,	2011),	we	focus	on	the	benefits	of	additional	informa-
tion,	 rather	 than	 the	 costs	 of	 acquiring	 that	 information	 (but	 see	
Essington,	Sanchirico,	&	Baskett,	2018).	However,	for	environmental	
managers to make an informed decision regarding which uncertain 
component	to	investigate	further,	the	relative	costs	of	acquiring	dif-
ferent types of information must be considered. These costs may 
include financial or time costs associated with gathering sample 
data. Other relevant factors that may increase overall cost include 
sampling	 feasibility,	 the	 level	of	expertise	 required	 to	 sample,	 and	
the reliability or reproducibility of sampling. These costs can be eas-
ily	 incorporated	 into	 the	existing	analysis	by	proportionally	dimin-
ishing	 the	EVPXI	of	 information	 that	 is	more	expensive	 to	collect.	
Alternatively,	it	is	possible	to	calculate	the	expected	value	of	partial	
sample	 information,	which	calculates	 the	benefits	of	acquiring	 im-
perfect information on each model component.

In	our	EVPXI	analysis,	we	assume	a	uniform	prior	distribution	for	
all uncertain system components. This assumption implies managers 
know nothing about the components or structure of the system and 
allows	us	to	imitate	complete	uncertainty.	However,	this	approach	
may overstate the amount of uncertainty typically present in an 

SES,	 as	 decision	makers	 may	 have	more	 information	 about	 some	
SES	elements	and	 less	about	others.	 It	 is	also	possible	that	uncer-
tainty	may	be	 endogenous	with	 respect	 to	 SES	 structure	 (i.e.	 the	
motif).	For	example,	 if	managers	are	 intervening	 in	 the	social	 sys-
tem,	they	may	have	more	information	about	social	system	elements:	
reducing	 the	 EVPXI	 for	 social	 parameters.	 This	 indicates	 that	 the	
more	that	is	known	about	a	given	SES,	the	more	nuance	is	required	
when	 assessing	 EVPXI.	 Future	 efforts	 should	 test	 the	 impact	 on	
management	outcomes	of	uncertain	SES	components	in	situations	
where	informative	priors	are	available.	Priors	could	be	elicited	in	a	
workshop	context	 to	capture	expert's	knowledge.	Coupled	with	a	
sensitivity	analysis,	this	approach	would	allow	analysts	to	study	the	
influence	of	prior	information	on	the	expected	value	of	information.	
Alternatively,	informative	priors	could	be	incorporated	through	the	
use	of	motifs	(Bodin	&	Tengö,	2012;	Milo	et	al.,	2002).	As	described	
previously,	motifs	can	be	considered	the	basic	building	blocks	of	a	
network.	However,	it	is	worth	noting	that	the	relevance	of	any	single	
motif	may	be	limited,	since	its	contribution	to	the	overall	dynamics	
will	be	moderated	by	its	interactions	with	the	broader	SES	network.

We	show	that	to	improve	environmental	management,	research	
should systematically focus on improving understanding of the un-
certain	 SES	 component	 that	 is	most	 directly	 affected	by	manage-
ment actions. Contrary to the assumptions of different subfields of 
environmental	management,	the	value	of	information	is	not	intrinsic	
to	the	character	(social	or	ecological)	of	system	nodes	or	interactions.	
Similarly,	in	contrast	with	the	orthodoxy	of	structured	decision‐mak-
ing,	value	of	 information	 is	not	 related	 to	management	objectives.	
Thus,	our	results	show	that	when	managers	are	undertaking	social	
actions	(e.g.,	engaging	with	fishers	to	increase	stock	levels	in	a	fish-
ery)	their	highest	research	priority	should	be	understanding	the	dy-
namics	of	social	groups.	Alternatively,	when	manipulating	ecological	
systems	(e.g.,	controlling	invasive	species),	it	will	be	most	important	
to understand the dynamics of ecological populations. Our insights 
provide fundamental and practical decision support for addressing 
ever-present uncertainty that impedes effective environmental de-
cision making worldwide.
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