
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mathematics & Statistics Faculty Publications Mathematics & Statistics 

10-2019 

Acute Systemic Inflammatory Response to Lipopolysaccharide Acute Systemic Inflammatory Response to Lipopolysaccharide 

Stimulation in Pigs Divergently Selected for Residual Feed Intake Stimulation in Pigs Divergently Selected for Residual Feed Intake 

Haibo Liu 

Kristina M. Feye 

Yet T. Nguyen 

Anoosh Rakhshandeh 

Crystal L. Loving 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs 

 Part of the Biochemistry Commons, Biostatistics Commons, Biotechnology Commons, Genetics 

Commons, and the Microbiology Commons 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mathstat_fac_pubs
https://digitalcommons.odu.edu/mathstat
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Haibo Liu, Kristina M. Feye, Yet T. Nguyen, Anoosh Rakhshandeh, Crystal L. Loving, Jack C. M. Sekkers, 
Nicholas K. Gabler, and Christopher K. Tuggle 



RESEARCH ARTICLE Open Access

Acute systemic inflammatory response to
lipopolysaccharide stimulation in pigs
divergently selected for residual feed intake
Haibo Liu1, Kristina M. Feye2, Yet T. Nguyen3, Anoosh Rakhshandeh4, Crystal L. Loving5, Jack C. M. Dekkers6,
Nicholas K. Gabler6 and Christopher K. Tuggle7*

Abstract

Background: It is unclear whether improving feed efficiency by selection for low residual feed intake (RFI)
compromises pigs’ immunocompetence. Here, we aimed at investigating whether pig lines divergently selected for
RFI had different inflammatory responses to lipopolysaccharide (LPS) exposure, regarding to clinical presentations
and transcriptomic changes in peripheral blood cells.

Results: LPS injection induced acute systemic inflammation in both the low-RFI and high-RFI line (n = 8 per line). At
4 h post injection (hpi), the low-RFI line had a significantly lower (p = 0.0075) mean rectal temperature compared to
the high-RFI line. However, no significant differences in complete blood count or levels of several plasma cytokines
were detected between the two lines. Profiling blood transcriptomes at 0, 2, 6, and 24 hpi by RNA-sequencing
revealed that LPS induced dramatic transcriptional changes, with 6296 genes differentially expressed at at least
one time point post injection relative to baseline in at least one line (n = 4 per line) (|log2(fold change)| ≥ log2(1.2);
q < 0.05). Furthermore, applying the same cutoffs, we detected 334 genes differentially expressed between the
two lines at at least one time point, including 33 genes differentially expressed between the two lines at baseline.
But no significant line-by-time interaction effects were detected. Genes involved in protein translation, defense
response, immune response, and signaling were enriched in different co-expression clusters of genes responsive
to LPS stimulation. The two lines were largely similar in their peripheral blood transcriptomic responses to LPS
stimulation at the pathway level, although the low-RFI line had a slightly lower level of inflammatory response
than the high-RFI line from 2 to 6 hpi and a slightly higher level of inflammatory response than the high-RFI line
at 24 hpi.

Conclusions: The pig lines divergently selected for RFI had a largely similar response to LPS stimulation.
However, the low-RFI line had a relatively lower-level, but longer-lasting, inflammatory response compared to the
high-RFI line. Our results suggest selection for feed efficient pigs does not significantly compromise a pig’s acute
systemic inflammatory response to LPS, although slight differences in intensity and duration may occur.
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Background
Feed efficiency in pigs is a trait of economic, environ-
mental and societal importance. One increasingly ac-
cepted measure of feed efficiency is residual feed intake
(RFI), which is defined as the difference between an indi-
vidual animal’s observed and expected feed intake for
growth and maintenance [1]. Thus pigs with a low RFI
are more feed efficient than those with a high RFI. Pilot
studies of divergent selection for RFI in pigs showed that
RFI responds well to genetic selection [2–4].
Compared to high-RFI pigs, pigs selected for low RFI

have reduced feed intake, but similar rate of growth [2–4].
This difference occurs likely because the low-RFI pigs are
more efficient in allocating resources for production and
maintenance [5]. The immune response is a nutrient- and
energy-demanding biological process and directly relates
to pig health and performance [6, 7]. Thus, one interesting
question is whether improving feed efficiency by selection
for low RFI affects the animal’s ability to respond to im-
mune challenges. Based on resource allocation theory [5],
selection for high feed efficiency is expected to comprom-
ise the animal’s capacity to handle immune stimulation,
such as the response that occurs during infectious diseases
[8]. This has been confirmed in studies on chickens and
beef cattle, where selection for increased feed efficiency in-
deed negatively affected their immune system [9].
Several experiments have investigated the potential side

effects of selection for divergent RFI phenotypes on the
immune response in pigs. First, a study of healthy pigs
from the divergently selected RFI lines at Iowa State Uni-
versity (ISU) [2–4], from which representatives were used
in the current study, showed that the low-RFI line had
lower numbers of monocytes, lymphocytes, and basophils,
but a higher hemoglobin concentration and red blood cell
volume compared to the high-RFI line [10]. Second, based
on results from an experimental infection with the porcine
reproductive and respiratory syndrome virus (PRRSV) in
pigs from the ISU RFI lines [2–4], Dunkelberger et al. [11]
reported that pigs from the low-RFI line had a lower viral
RNA load in the blood, a faster humoral immune response
to PRRSV, and were less affected in terms of reduced
growth rate than pigs from the high-RFI line. Third, in a
parallel divergent selection experiment conducted at the
French National Institute for Agricultural Research
(INRA), the low-RFI line had a lower basal expression of
many genes involved in immune and inflammatory re-
sponse than the high-RFI line [12, 13]. Fourth, to test the
immune response in the divergently selected RFI lines de-
veloped by INRA, piglets from both lines were challenged
with the Complete Freund’s Adjuvant (CFA) to induce a
non-infectious pneumonia [14–17]. This work showed
that both RFI lines handled the inflammatory challenge
similarly, but did so by adopting different metabolic strat-
egies [15]. Interestingly, the protein abundance of

inflammatory cytokines was lower in the low-RFI line in
multiple tissues involved in the immune response 1 week
after CFA injection [16]. Lastly, Vigros et al. [18] exam-
ined the expression profiles of a set of target genes related
to intestinal inflammation in pigs with extremely divergent
RFI phenotypes, both before and after an ex vivo LPS ex-
posure of ileal and colonic tissue explants. No differen-
tially expressed genes were detected in the un-stimulated
explants. However, the mRNA levels of several proinflam-
matory cytokines (IL8, IL1, IL6, TNFα, IFNγ) and SOCS3
were lower in the low-RFI than the high-RFI explants fol-
lowing LPS challenge [18]. These authors proposed that
low-RFI pigs may adopt an energy saving mechanism dur-
ing intestinal responses to an immune challenge [18].
Taken together, although no significant negative side ef-
fects of selection for increased feed efficiency based on re-
duced RFI on the immune response in pigs have been
detected, little is known about the effect of selection for
RFI on the global transcriptomic profiles during the
course of acute systemic inflammatory response in pigs.
As a major component of the outer membrane of most

gram-negative bacteria [19], LPS has been widely used in
vertebrates as an inflammatory immunostimulant. In verte-
brates, LPS induces inflammatory response mainly via the
TLR4-dependent NFκB signaling pathway [20, 21], although
a TLR4-independent host response to LPS has also been
identified [22]. Thousands of genes, including many pro-
inflammatory and anti-inflammatory cytokines and chemo-
kines, have been shown to be involved in the LPS-induced
inflammatory response in multiple vertebrates, including pigs
[23–28]. LPS stimulation can cause many physiological and
behavioral changes, including elevated body temperature,
dramatic hemodynamic, increased cytokine levels, reduced
feed intake, and altered metabolism [29–32].
The objective of this study was to determine whether di-

vergent selection for RFI significantly affects the pig’s sys-
temic inflammatory/immune response to LPS. We induced
acute systemic inflammatory response by intramuscular in-
jection of LPS in two lines that were divergently selected
for RFI [2, 33], and then measured changes in body
temperature, complete blood count (CBC), plasma cytokine
levels, and peripheral blood transcriptome over time in
these lines by using RNA-seq. We detected a few minor dif-
ferences between the two RFI lines’ systemic inflammatory
responses triggered by LPS, although acute responses were
substantial in both lines. Our work suggests that the per-
ipheral blood gene expression of low-RFI pigs is only
slightly different from that of high-RFI pigs in response to
an acute inflammatory challenge.

Methods
Animals, experimental design, and sample collection
The pigs for this study were exclusively from Generation
8 of the Yorkshire pig lines divergently selected for RFI
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at ISU [2, 33], which are developed and owned by Dr.
Jack CM Dekkers, one of the co-authors. The experiment
was performed in two independent replicates of a 2-by-2
factorial design with repeated measures. The sample size,
LPS dosage, and injection route of LPS were determined
by referring to our previous study [34]. Figure 1a shows
the experimental design for one replicate. A total of 28
gilts with an initial body weight (BW) of 63 ± 4 kg from
the low-RFI and high-RFI lines (n = 14 per line) were ran-
domly selected and utilized for the two replicates. Pigs
were housed in randomly assigned individual metabolism
crates, had ad libitum access to water, and were fed a
corn-soy-based diet twice daily (8,00 am and 5:00 pm),
with feed restriction (1.5 kg/day), as previously described
[35]. After a 9-day adaptation period, pigs within each line
were randomly assigned to either a control (n = 6, three
pigs per line) or LPS treatment (n = 8, four pigs per line)
group. Pigs in the treatment group were then challenged

with LPS using an established method [34] via intramus-
cular injection of 30 μg/kg BW of LPS from E. coli O55:B5
(Sigma-Aldrich, St. Louis, MO, USA) dissolved in a
endotoxin-free, sterile saline solution at baseline, 0 h post
injection (hpi). Pigs in the control group were injected
with an equivalent volume of endotoxin-free, sterile saline
solution at the equivalent time. The rectal temperature of
each pig was measured at 0, 2, 4, 6, and 24 hpi. At 0, 2, 6,
and 24 hpi, blood samples were collected from the jugular
vein into Tempus™ Blood RNA tubes (Life Technologies,
Grand Island, NY, USA) for long-term storage at − 80 °C,
into EDTA tubes (BD, Franklin Lakes, NJ, USA) for
complete blood count tests and cytokine assays. Injection,
temperature measurement, and blood collection followed
the same order which was the predefined order of metab-
olism crates in the pen rooms. The sampling time points
were determined by referring to a previous study where
time series response of humans to LPS were investigated

Fig. 1 Experimental design and blood sample collection. a The experiment was performed in two replicates. Shown here is one of the two
replicates. Fourteen gilts with a similar initial body weight (BW) from the low-RFI and high-RFI lines (n = 7 per line) were randomly selected and
used for each replicate. Pigs were housed in individual metabolism crates, and had ad libitum access to water, but were restricted to feed intake.
After a 9-day adaptation period, pigs within a line were randomly assigned to either a control (n = 6, three pigs per line) or LPS treatment (n = 8,
four pigs per line) group. Pigs in the treatment group were then challenged with LPS via intramuscular injection of 30 μg/kg BW of LPS from E.
coli O55:B5 dissolved in an endotoxin-free, sterile saline solution at baseline (0 hpi). Pigs in the control group were injected with an equivalent
volume of endotoxin-free, sterile saline solution at the equivalent time. The rectal temperature of each pig was measured at 0, 2, 4, 6, and 24 hpi.
At 0, 2, 6, and 24 hpi, blood samples were collected from the jugular vein into Tempus™ Blood RNA tubes for long-term storage at − 80 °C, into
EDTA tubes for CBC tests and cytokine assays. For more details, see Materials and Methods. b Shown are the numbers of animals with blood
samples collected from the two replicates at 0, 2, 6, and 24 hpi and the types of assays performed on different samples. Only blood samples
collected from the LPS treated group from Replicate 2 were used for RT-qPCR and RNA-seq. Blood samples collected from all animals from both
replicates were used for CBC tests and cytokine assays. The images of pigs were created by one of the co-authors, Anoosh Rakhshandeh and
agreed to be published here. HRFI, high-RFI line; LRFI, low-RFI line
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[24]. Figure 1b show the number of blood samples col-
lected at each time points from each replicate. At 168 hpi,
all pigs were anesthetized by intraperitoneal injection of
sodium pentobarbital (100mg/kg BW), and exsanguinated
by cutting their carotid and jugular vessels.

RNA preparation
Total RNA was extracted from the Tempus tube sam-
ples from Replicate 2 of the treatment groups for both
pig lines by using preserved blood RNA purification kit I
(Norgen Biotek Corp, Thorold, Ontario, CA) per the
manufacturer’s instructions. On-column DNA digestion
was performed using DNase I (Qiagen, Valencia, CA,
USA). Globin transcripts (HBB and HBA) were depleted
by following an RNase H-mediated method [36]. The
quantity and integrity of the RNA were monitored by
using Nanodrop 2000 (Thermo Scientific, Waltham,
MA, USA) and Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA, USA) before and after globin depletion.
The efficiency of globin depletion of each sample was
checked by conventional RT-qPCR with ACTB and
GAPDH as the internal controls. Globin depletion effi-
ciencies for all RNA samples were above 85%. Metadata,
including RNA integrity numbers (RINs) and concentra-
tion of RNA post globin depletion, CBC, and sequencing
batches are available in Additional file 1: Table S1.

Complete blood count (CBC) tests and plasma cytokine
assays
CBC tests were performed for all except five clotted sam-
ples by the Pathology Lab, College of Veterinary Medicine
at ISU as described [10]. Eight cytokines (IFNα, IFNγ,
IL1β, IL4, IL6, IL8, IL10 and TNFα) in the all 112 plasma
samples were assayed by using Aushon SearchLight Ar-
rays for pig cytokines (Aushon BioSystems, Billerica, MA,
USA) per the manufacturer’s instructions.

Verification of transcriptional response to LPS stimulation
by RT-qPCR
Primers for 47 candidate genes, which were porcine ortho-
logs of human and murine genes responsive to LPS stimu-
lation or important for Gram-negative sepsis control and
resolution, and three house-keeping genes (ACTB, RPL32
and GAPDH), were designed and synthesized by Fluidigm
Corporation (Fluidigm Corporation, San Francisco, CA,
USA) such that two primers of each pair were separated
by exon-exon boundaries and could amplify all known iso-
forms of the target gene, if possible. The specificities of
the primer pairs were tested by conventional RT-qPCR
using the DNA Engine Opticon 2 System (BioRad,
Hercules, CA, USA) and only primer pairs that gave single
peaks in melting curve analyses were kept. Additionally,
the qPCR was performed without the melt curve analysis
step and the amplicons were visualized on a 2% agarose

gel for doublets, significant primer dimers, and confirm-
ation of the amplicon size. Primer pairs producing ampli-
cons of unexpected sizes were removed from the study. In
total, this quality control scheme resulted in 36 and two
primer pairs for genes of interest and internal controls
(RPL32 and GAPDH) meeting the requirements, respect-
ively (Additional file 2: Table S2). The 32 RNA samples
from Replicate 2 of the treatment group were used for
Fluidigm RT-qPCR without globin depletion. By following
the Fluidigm user guide for Real-Time PCR analysis [37],
real time-qPCR was done on a 48.48 dynamic array chip
(Fisher Scientific, Pittsburgh, PA, USA), along with reac-
tions for assessing primer amplification efficiency, using
the Biomarker HD system (Fluidigm Corporation, San
Francisco, CA, USA). Data were analyzed with the Flui-
digm Real-Time PCR analysis software using the default
settings, to obtain raw Ct (cycle of threshold) values. Since
the expression levels of internal controls were not very
stable for individual pigs during the time course, RT-
qPCR data were analyzed by using the R package
MCMC.qpcr (version 1.2.3) [38]. With this method, in-
ternal reference genes are not mandatory but can be in-
corporated as Bayesian priors or as trackers of global
effects when template abundances correlate with experi-
mental conditions [38]. Briefly, Ct values were converted
into the copy number of templates by incorporating the
amplification efficiencies of the primers and then analyzed
using a generalized linear mixed model, which assumed
the copy number of the transcripts of a given gene follows
a lognormal-Poisson distribution. In the generalized linear
mixed model, effects for line, time, line-by-time inter-
action, and plate used for Fluidigm PCR were treated as
fixed effects, while individual animal was included as a
random effect. Bayesian MCMC prior distributions for
fixed effects and the random effect were derived by using
expression data of GAPDH and RPL32 during the 24-h
time course. The p-values associated with the effects of
line, time and line-by-time interaction were adjusted by
using the Benjamini-Hochberg (BH) method [39].

RNA-sequencing
The 32 RNA samples used for the RT-qPCR assays
above were also used for RNA-seq after depleting globin
transcripts as described above. Library construction and
sequencing were performed by the Beijing Genomics In-
stitute (BGI, Hongkong, CN). Briefly, the RNA-seq li-
braries were constructed using the Illumina TruSeq
RNA Sample Preparation Kit v2 (Illumina, San Diego,
CA, USA) per the manufacturer’s instructions. Individual
libraries were diluted to 2 nM and pooled in approxi-
mately equimolar amounts, with 8 libraries per pool.
Paired-end sequencing (2 × 50 bases) was run on an Illu-
mina Hiseq 2000 platform with one pool per lane.
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Quality control, preprocessing and alignment of RNA-seq
reads
Read quality was checked and filtered by BGI using their
custom scripts. For a pair of reads, the whole pair was
removed if either read met the following criteria: (1) ei-
ther read had more than 50% of their bases aligned to
the adapter sequences; (2) either read contained more
than 10% of ‘N’ bases; (3) either read had more than
40% of bases with PHRED+ 64 quality scores lower than
20. The kept reads were aligned to the pig reference gen-
ome Sscrofa 11.1 (version 90, Ensembl) using 2-pass
rna-STAR (version 2.5.3a) with the ENCODE standard
option settings plus two explicit option settings: --outFil-
terMismatchNoverReadLmax 0.1 --outFilterIntronMotifs
RemoveNoncanonical [40, 41]. The resulting BAM files
were further processed by using MMR to assign multi-
mapper reads to their most likely locations such that the
variances of local basewise coverage were minimized
[42]. Read counts per gene per library were summarized
by using featureCounts (version 1.5.3) [43] with explicit
settings -d 30 -M, with the pig genome GTF file (version
90, Ensembl) as the genomic annotation reference file.
Prior to differential expression analysis, hemoglobin
genes (HBA and HBB) and genes with few reads were
removed from the count table, such that only genes with
count per million (cpm) mapped reads greater than one
in at least four samples were kept. This analysis resulted
in a final count table for 12,703 genes. This count table
was used for subsequent differential expression analysis
and clustering analysis after further transformation and
adjustment (see below).

Differential expression analysis of RNA-seq data
Although in recent years, a few tools have been developed
for time-course RNA-seq differential gene expression ana-
lysis [44, 45], there is no generally accepted, applicable
method to analyze RNAseq data from a short time-series ex-
periment, with less than five time points and a small sample
size as this study, in which within-individual measures are
generally correlated. Therefore we were unable to take into
account expected within-animal correlation in our differen-
tial expression analysis. We used the R/Bioconductor pack-
age DESeq2 (1.20.0) [46] for differential expression analysis
for two reasons: (1) DESeq2 adopts empirical Bayes shrink-
age estimation for dispersions and fold changes, which im-
proves stability and interpretability of estimates; (2) DESeq2
allows statistical tests of differential expression with a speci-
fied minimum effect size, which avoids the issue that post
hoc filtering of differentially expressed genes (DEGs) based
on a fold change threshold results in a false discovery rate
(FDR) that is not easy to interpret [46]. Additionally, known
nuisance variables, such as RNA preparation batch, RIN,
BW, and blood cell composition, could not well account for
the treatment-unrelated variations of the complicated blood

transcriptome. This is likely because several of them, such as
the concentration of rare subtypes in peripheral blood (such
as basophils, eosinophils, and monocytes), were not accur-
ately measured. And more importantly, single cell RNA-seq
data in human [47] and pig peripheral blood mononuclear
cells (PBMCs) (Crystal L. Loving, Haibo Liu et al., unpub-
lished) revealed that the lymphocytes are composed of tran-
scriptionally very heterogeneous subtypes of cells. Surrogate
variable analysis has been shown to be a powerful method
to detect and adjust for hidden variations in high through-
put gene expression data [48, 49]. Therefore, we decided to
use surrogate variables estimated by the svaseq function of
the R/Bioconductor package sva (v3.28.0) [50] to account
for the hidden nuisance variations in our RNA-seq data. Six
surrogate variables were estimated by using a full model that
included terms for an intercept, line, time and line-by-time
interaction, and a reduced model that included only an
intercept term.
Differential expression analyses were conducted using

DESeq2 as mentioned above. Briefly, a generalized linear
model was fitted for each gene in the count table, with a
negative binomial response and a log link that included
a DEseq2 normalization offset and the effects of line,
time and line-by-time interaction, and the six surrogate
variables as estimated above. The nbinomWaldTest
function was used to estimate and test the significance
of regression coefficients with the following explicit par-
ameter settings: betaPrior = FALSE, maxit = 5000, useOp-
tim = TRUE, useT = FALSE, useQR = TRUE. Differentially
expressed genes between conditions were identified by
testing the significance of relevant contrasts and using
the results function with the following explicit parame-
ters: alpha = 0.01, lfcThreshold = log2(1.2), altHypoth-
esis = “greaterAbs”, that is, testing whether the absolute
values of the log2 fold changes between conditions were
greater than log2(1.2). Thus, the estimates of the fold
changes were shrunken by performing empirical Bayes
shrinkage and their significances were tested by specify-
ing a minimum effect size, which can improve the stabil-
ity and interpretability of the estimates [46]. Multiple
testing correction was performed by using the BH
method [39]. Genes with absolute values of the log2 fold
change greater than log2(1.2) and adjusted p values less
than 0.05 were considered to be DEGs.

Statistical analysis of body temperature, CBC and
cytokine profile data
Cytokine levels below the lower limit of detection were re-
placed by one half of the smallest positive values in the cyto-
kine dataset. The CBC data and the imputed cytokine data
were natural log-transformed for further analyses. Rectal
temperature (all 140 data points), the transformed CBC data
(107 data points) and cytokine data (all 112 data points)
were analyzed by using the SAS PROC MIXED procedure
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(SAS Institute Inc., Cary, NC) for repeated measures ana-
lysis. The models used for analyzing CBC data and rectal
temperature data contained RFI line (Line), sampling time
(Time), treatment (Treatment), two-way and three-way in-
teractions of the three former factors, body weight (BW)
and age (AgeOfChallenge) at LPS injection, and pen by
rooms (PenRoom) as fixed effects. For cytokine data ana-
lysis, plate used in the assays (Plate) was also included as a
fixed effect, along with all the independent variables used for
rectal temperature data analysis. Six commonly used re-
sidual correlation structures for repeated measures data ana-
lysis, compound symmetry (CS), heterogeneous compound
symmetry (CSH), autoregressive (AR), heterogeneous auto-
regressive (ARH), spatial power (SP), and unstructured
(UN) correlation structures, were considered. For each re-
sponse variable, the correlation structure giving the smallest
Akaike information criterion (AIC) was selected for the final
analysis. The goodness of fit of the models was assessed as
descried [51]. Type III tests were performed for fixed effects
and contrasts were adjusted using the Kenward-Roger
method [52].

Clustering of gene expression profiles
The filtered RNA-seq count data were transformed to log
(cpm) by using the voom function of the limma package
(v3.36.2) [53, 54]. The transformed gene expression levels
were then adjusted for the nuisance variables, i.e., the six
surrogate variables used in the model for RNA-seq differ-
ential expression analysis. The adjusted log (cpm) for all
individuals of the two lines were altogether used as input
for the software STEM (v1.3.8), which is a tool specifically
developed for short time-series expression data mining
[55]. For parameter settings, see Supplementary Methods
(Additional file 3). To test how likely the observed profiles
were created at random, permutation tests were per-
formed (For details, see Additional file 3). Expression pro-
files with more genes assigned than expected based on a
null distribution derived from permutation, where gene
expression values at 2, 6 and 24 hpi were randomly per-
muted within each animal for 50 iterations and used for
STEM analysis (q < 0.05), were considered as significant
profiles. Significant expression profiles were clustered to-
gether if the correlation coefficients of two mean profiles
were no less than 0.6. GO term overrepresentation ana-
lysis and visualization were performed for genes in each
cluster of profiles with a q value cutoff of 0.05 by using
built-in functionality in STEM.

Gene ontology term overrepresentation analysis (GOA)
Gene ontology (GO) annotation for pig genes was down-
loaded from Ensembl BioMart (Release 90). GO terms
associated with less than 10 or more than 500 genes
were excluded. For the RNA-seq data, 12,703 Ensembl
Gene IDs with detectable expression in the blood

samples were used as the background references. Hyper-
geometric tests of overrepresentation of GO terms by a
gene list of interest were performed by using the Cytos-
cape (v3.4.0) [56] package BiNGO (v3.0.3) [57] with a q
value cutoff of 0.05.

Gene set enrichment analysis (GSEA)
Gene set enrichment analysis for the pig blood RNA-seq
data was performed using the R/Bioconductor gage pack-
age (v2.22.0), which implements a gene permutation-
based algorithm for gene set and pathway enrichment
analysis [58]. Expression data adjusted for surrogate vari-
ables were used as inputs. The latest pig-specific KEGG
pathways and GO terms-associated genes were down-
loaded from the KEGG database (Release 87.0) using the
gage package [58] and Ensembl Biomart (Release 90) using
the biomaRt package (v2.36.1) [59], respectively. The
package gage was run in a paired-comparison mode when
the samples compared were from the same individuals;
otherwise it was run in a “group comparison” mode. Gene
set enrichment analysis that made use of disregulation dir-
ection was performed for GO terms-derived gene sets,
while for KEGG pathways-based gene sets, enrichment
analysis both aware and unaware of dis-regulation direc-
tion were performed, with a q value cutoff of 0.05.

Other statistical methods
A Sankey diagram showing status changes of DEGs over
the time course of this study was generated by using the
R package alluvial (v0.1–2, Bojanowski M. and Edwards
R, unpublished). Surrogate variable-adjusted expression
levels of differentially expressed genes or probesets were
hierarchically clustered using the Ward.2 method with
one minus the Pearson correlation coefficient as the dis-
tance measure to generate heatmaps using the pheatmap
package (v1.0.10). 3D-principal component analysis
(PCA) plots were generated using the R package pca3d
(v0.10) (Weiner J. unpublished).

Results
Clinical data showed only slight differences in response
to LPS between the two lines
We intramuscularly injected pigs from the two lines di-
vergently selected for RFI with LPS or saline to investi-
gate whether divergent selection for RFI for multiple
generations affects the pigs’ systemic inflammatory re-
sponse over the 24 hpi. We did not detect a significant
replicate difference in the rectal temperature profile (p >
0.1). So we performed joint analyses of the rectal
temperature data from both replicates. As expected, the
mean rectal temperature of pigs in the control group
(n = 6 per line) only slightly fluctuated around 39 °C
(39.07 ± 0.35 °C, mean ± standard deviation) during the
time course of the study (Fig. 2a). However, the rectal
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temperature of LPS-treated pigs of both lines (n = 8 per
line) at 2, 4 and 6 hpi was significantly higher than that
at baseline (p < 9 × 10− 11). Slight differences in rectal
temperature profiles were observed between the two
lines. In detail, after LPS injection, the average rectal
temperature of the high-RFI pigs increased by 1.31 °C at
2 hpi, peaked at 4 hpi, and then decreased and almost
returned to baseline by 24 hpi. On the other hand, the
average rectal temperature of the low-RFI pigs increased
by 1.33 °C at 2 hpi, slightly decreased at 4 hpi, increased

at 6 hpi, and then dropped towards baseline (Fig. 2a). By
24 hpi the average rectal temperature of the low-RFI
pigs was still 0.4 °C higher than that at baseline (p =
0.034) (Fig. 2a). It is noteworthy that during the time
course the maximal increase of the mean rectal temperature
compared to their respective baseline temperature was
1.45 °C and 1.98 °C, for the low-RFI and high-RFI pigs
treated with LPS, respectively. At 4 hpi, the rectal
temperature of the high-RFI pigs was significantly higher
than that of the low-RFI pigs (p= 0.0075). Additionally, the

Fig. 2 Intramuscular injection of LPS induced systemic inflammation. a LPS, but not saline, induced a fever response in pigs. The rectal
temperature of pigs treated with LPS was significantly higher than baseline at 2, 4 and 6 hpi. Notably, the mean rectal temperature was
significantly lower in the low-RFI animals than in the high-RFI animals at 4 hpi (adjusted p < 0.0075). At 6 hpi, the mean rectal temperature
tended to be lower in the low-RFI animals than in the high-RFI lines, but this tendency reversed by 24 hpi. Shown are profiles of least square
means of rectal temperature for the two lines at each time point after injection with LPS or saline. Error bars show standard errors of the means
of rectal temperature of each line at each time point. b Neutrophil/lymphocyte ratios changed over the time course of the study in response to
LPS stimulation. The neutrophil/lymphocyte ratio (NLR) was significantly higher at 6 and 24 hpi in the low-RFI animals than in the high-RFI lines
treated with LPS (p < 0.03, two sided Mann-Whitney U test). c Dynamic CBC profiles in response to LPS or saline treatment showed LPS injection
triggered inflammation in pigs of both lines, while saline did not. The quantity of each CBC parameter was standardized by normal
transformation and displayed as a heatmap. d Cytokine dynamic profiles in response to LPS or saline injection in pigs. Cytokine concentrations
were standardized by normal transformation and displayed as a heatmap. HRFI, high-RFI line; LRFI, low-RFI line
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line-by-treatment interaction effect at 4 hpi was significant
(p= 0.03). Detailed results of statistical analyses of the rectal
temperature changes post treatment are shown in Add-
itional file 4: Table S3. Pigs in the LPS treatment group had
a rectal temperature higher than 40 °C from 2 to 6 hpi, indi-
cating that intramuscular injection of LPS induced fever in
pigs, which is a typical symptom of the systemic inflamma-
tion response.
Several parameters in the CBC profiles significantly

changed in animals injected with LPS during the time
course of the study, but no significant effects were de-
tected for line, line-by-treatment, or line-by-time inter-
action effects (Fig. 2c, Additional file 5: Figure S1 and
Additional file 6: Table S4). Median levels of red blood
cells (RBCs), hemoglobin and hematocrit decreased at 2
hpi and remained lower than baseline at 24 hpi in the
control group. For the treatment group, levels of red
blood cells (RBCs), hemoglobin, and hematocrit de-
creased only at 2 hpi and 24 hpi (p < 0.02) in the low-
RFI animals. In the high-RFI animals, levels of RBCs and
hemoglobin slightly increased at 2 hpi, peaked at 6 hpi,
and then decreased to levels lower than baseline at 24
hpi. Hemoglobin levels changed very similarly for both
lines. The concentration of platelets did not significantly
change in the control group, but continuously decreased
post LPS injection in the treatment groups. In the control
group, the concentration of each subtype of white blood
cells (WBCs) did not significantly change relative to base-
line regardless of line. For the LPS group, the concentra-
tion of each type of WBC significantly decreased at 2hpi,
with the exception of basophils, which tended to be lower
than baseline at 2 hpi, but was only significantly lower
than baseline at 6 hpi. The level of neutrophils rebounded
to baseline by 6 hpi and increased to a significantly higher
level than baseline by 24 hpi, while the other subtypes of
WBCs remained low (lymphocytes) or slightly increased
(monocytes and eosinophils) at 6 hpi. By 24 hpi, the levels
of basophils and eosinophils returned to baseline, while
levels of lymphocytes and monocytes were still below
baseline. The dynamic profile changes of WBCs in pigs
treated with LPS suggests those pigs underwent leukopenia
followed by neutrophilia. The neutrophil/lymphocyte ratio
(NLR) peaked at 6 hpi, and was significantly different be-
tween the two lines at 6 and 24 hpi (p < 0.03, two-sided
Mann-Whitney U test) (Fig. 2b). Summary statistics com-
paring the levels of the parameters of the CBC profiles in
the peripheral blood post LPS injection in the control and
treatment groups are shown in Additional file 6: Table S4.
The dynamic profiles of WBCs during this time course fur-
ther support the idea that systemic inflammation was in-
duced by LPS in pigs.
Other common metrics of systemic inflammation are

the levels of cytokines in the bloodstream. Plasma levels of
eight cytokines (IL1β, IL4, IL6, IL8, IL10, TNFα, IFNα and

IFNγ) at various time points following LPS injection are
shown in Fig. 2d. Due to high variations in the measure-
ments, which were also reported by Thorgersen et al. [60],
no significant effects were detected for line, line-by-
treatment or line-by-time interaction (Additional file 7:
Table S5). However, animals treated with LPS tended to
have higher cytokine levels in their bloodstream at 2 hpi
compared to baseline, and compared to the control group
at the equivalent time point. In the treatment group, the
levels of three proinflammatory cytokines (IL6, IL1β and
TNFα) were generally still higher than baseline at 6 hpi
and returned to baseline by 24 hpi, while the levels of
other cytokines nearly returned to baseline by 6 hpi. Sum-
mary statistics comparing the concentrations of the cyto-
kines in the peripheral blood at 0, 2, 6 and 24 hpi in each
experimental group are shown in Additional file 7: Table
S5. The dynamic profiles of peripheral blood cytokines
provide supportive evidence that LPS induced systemic in-
flammation in pigs.

Targeted transcriptomic assays confirmed inflammatory
response to LPS in blood but showed only slight
differences between the two lines
In addition to assessing levels of peripheral blood cyto-
kines, changes in the transcript abundance for 36
inflammation-related genes were evaluated by RT-qPCR
assays. The expression levels of 24 genes were signifi-
cantly different from baseline for at least one time point
after LPS injection (q < 0.05) (Fig. 3 and Additional file 8:
Figure S2). No line-by-time interaction effects were de-
tected for any gene assayed, while a line difference in
gene expression was detected only for the CXCL13 gene
(maximal log2(fold change) = 1.6, p = 0.004). Briefly,
genes encoding nine cytokines/chemokines (IL1β, IL10,
IL12A, IL15A, CXCL2, CXCL8, CXCL10, CXCL13, and
CCL20), seven receptors (TLR4, CD11B, CD14, CD97,
CCR5, TNFRSF1A and IL1R2), and eight TLR4/NFκB
signaling pathway components or effectors (IRF3,
IRAKM, IKBNS, STAT4, S100A9, SOD2, CASP1 and
IDO1) were significantly up-regulated in peripheral
blood after LPS injection relative to baseline for at least
one time point (Fig. 3). The mRNA levels of proinflam-
matory cytokines and chemokines, including IL1β,
IL12A, CXCL2, CXCL8, CXCL10 and CCL20, peaked at
2 hpi, while the mRNA amount of anti-inflammatory cy-
tokines, IL1R2, TNFSF1A, and IL10, peaked at 6 hpi.
The mRNA abundance for several genes involved in ini-
tiating the innate immune response, including TLR4,
IRAK4, IRAKM, IRF3, NFκB1, RELA, and STAT1, and
those involved in limiting the innate immune response,
such as IKBNS, reached their peaks or nearly peaked by
6 hpi. Thus, the RT-qPCR data indicate that pigs
injected with LPS had a typical inflammatory response,
which progressed from an acute pro-inflammatory
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phase, to an anti-inflammatory phase and finally towards
full resolution, very similar to the inflammatory response
triggered by LPS in humans [24].

Global mRNA profiling revealed only slight differences in
response to LPS between the two lines
To gain a further understanding of the differential im-
mune responses upon LPS exposure between the two
lines, the peripheral blood transcriptomes of pigs from the

two RFI lines (n = 4 per line) in the LPS treatment group
at 0, 2, 6, and 24 hpi were profiled using RNA-seq. On
average, 19.4 ± 2.5 million (mean ± standard deviation)
read pairs per library were obtained and more than 92.2 ±
1.6% (mean ± standard deviation) of reads were uniquely
mapped to the pig reference genome. After filtering out
genes of very low expression, as well as hemoglobin genes
(HBA and HBB), there were 12,703 genes whose expres-
sion levels met the minimal abundance requirement for

Fig. 3 Expression profiles of inflammation-related genes as determined by RT-qPCR. Shown are the least square means of log2(abundance) ± 95%
confidence intervals of 24 genes differentially expressed at least at one time point post LPS injection compared to baseline, and an assumed
internal reference gene (RPL32). Notably, the expression level of the assumed internal reference was not stable over the time course of the study.
For expression profiles of 36 selected and two assumed internal references, see Additional file 8: Figure S2. HRFI, high-RFI line; LRFI, low-RFI line

Liu et al. BMC Genomics          (2019) 20:728 Page 9 of 24



downstream analyses. Principal component analysis sug-
gested that samples from different time points were well-
separated in the plane formed by the first and second
principal components (PC1 and PC2), and samples from
the two lines were well-separated in the PC3 direction
(Additional file 9: Figure S3). Hierarchical clustering
showed that samples at 24 hpi were closer to those at
baseline than those at 2 and 6 hpi (Additional file 10: Fig-
ure S4).
We detected 33, 119, 113 and 203 genes that were dif-

ferentially expressed between the two lines at 0, 2, 6 and
24 hpi, respectively (q < 0.05, Additional file 11: Table S6).
Overall, we detected 334 unique genes which were differ-
entially expressed between the two lines for at least one
time point during the time course of the study. A heatmap
showing expression profiles of these 334 DEGs is shown
in Fig. 4. Fourteen of these 334 genes were differentially
expressed between the two lines at all four time points
studied, as shown by the Venn diagram (Fig. 5a).

To find genes whose expression significantly changed after
LPS injection, we compared gene expression between time
points after injection and at baseline for each line and identi-
fied a large number of DEGs (Fig. 6 and Additional file 12:
Table S7). DEGs in peripheral blood cells of the two lines at
the given time points relative to baseline largely overlapped
but DEGs of the two lines at different time points only mod-
erately overlapped (Fig. 5b-g). In total, 6296 unique genes
were differentially expressed in at least one line for at least
one time point post LPS injection relative to baseline. Sig-
nificant line-by-time interaction effects were only detected
for two genes (AQP2 and CXCL11), which suggests that the
line-by-time interaction effects were negligible. A full list of
within-line DEGs at 2, 6, and 24 hpi compared to baseline is
available in Additional file 12: Table S7. Genes that were
differentially expressed at least for one time point post
LPS injection compared to baseline in at least one line
were hierarchically clustered and are displayed as a heat-
map (Fig. 6). Expression patterns of gene sets derived from

Fig. 4 Heatmap showing expression profiles of DEGs between lines. Shown here are 334 gene that were differentially expressed (|log2(fold
change)|≥ log2(1.2) and q < 0.05) between the two lines at least at one time point during the time course of the study. HRFI, high-RFI line; LRFI,
low-RFI line
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GO biological process terms, GO:0006954 (inflamma-
tory response), GO:0002526 (acute inflammatory re-
sponse) and GO:0032496 (response to LPS), are
shown in Additional file 13: Figure S5.
The 6296 DEGs included 23 of the 24 genes that were

detected as differentially expressed by the RT-qPCR assays

for at least one time point post injection relative to baseline.
Notably, 1610 of the 6296 DEGs were cross-validated by
another gene expression microarray experiment that pro-
filed the longitudinal whole blood transcriptomic response
to LPS [23] (For reanalysis methods, see Additional file 3).
Some of the 1610 cross-validated genes showed very

Fig. 5 Venn and Sankey diagrams showing between-line, within-line DEGs (|log2(fold change)|≥ log2(1.2) and q < 0.05) at different time points. a
Venn diagram showing 334 DEGs between the two lines at each time point. b and c Venn diagrams showing DEGs between time points post
LPS treatment and baseline in the high-RFI (b) and low-RFI (c) animals. d-f Venn diagrams showing the relationship of within-line DEGs at 2, 6,
and 24 hpi relative to baseline, respectively, between low-RFI and high-RFI lines. HRFI, high-RFI line; LRFI, low-RFI line. g Sankey diagram showing
dynamic differential expression of genes at 2, 6 and 24 hpi compared to baseline for both lines. Flow strips of up-regulated, non-significantly
differentially expressed, and down-regulated genes at 2 hpi in the high-RFI animals compared to baseline are colored in red, gray and green,
respectively. The number of genes in each differential expression categories at each time point for each line is shown. The heights of the strips
and blocks are proportional to the gene counts. Labels on the horizontal axis are designated similarly. For example, H2/H0 means gene
expression at 2 hpi compared to baseline for the high-RFI animals
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similar dynamic patterns in both studies, while others
showed delayed response patterns in Terenina et al.
[23] compared to our study. Dynamic expression pat-
terns of some representative cross-validated genes are
shown in Fig. 7 and Additional file 14: Figure S6.
In summary, differential gene expression analyses sug-

gested the pigs’ blood cell transcriptomes were dramatic-
ally altered by LPS injection in both lines in largely
similar ways, although expression dynamics of some
genes were slightly different between the two lines.

Functional annotation of between-line transcriptomic
differences revealed slight differences in dynamics of
responses to LPS between the two lines
The DEGs between the two lines at each time point were
first functionally annotated by usingGOA (Additional file 15:
Table S8). Among DEGs between the two lines at baseline,
overrepresented were genes with transmembrane trans-
porter activity (GO:0022857), and more specifically, chlor-
ide channel activity. No GO terms were significantly
overrepresented among the list of DEGs between the two
lines at 2 hpi. Genes involved in porphyrin/heme biosyn-
thesis and cellular iron ion homeostasis were overrepre-
sented among the between-line DEGs at 6 hpi. At 24 hpi,
genes involved in porphyrin/heme biosynthesis, as well as
the immune response (GO:0006955), and more specifically,
genes involved in antigen processing and presentation of
peptide or polysaccharide antigen via MHC class II (GO:
0002504), were overrepresented among the between-line
DEGs. The expression levels of six porcine MHC class II
genes were significantly lower in the low-RFI line than in
the high-RFI line at 24 hpi (Additional file 11: Table S6 and
Additional file 16: Figure S7).
The functions of the DEGs between the two lines at

each time point were then analyzed using GSEA, which
is more sensitive than GOA, especially when the tran-
scriptional differences between conditions are small [61].
Gene set enrichment analysis based on comparing mean
expression levels of genes in the low-RFI versus the
high-RFI line not only largely recapitulated the results of
GOA, but also indicated many more gene sets of interest
were enriched (Figs. 8 and 9). For example, the gene sets
for antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II were generally
enriched among genes that had lower expression levels
in the low-RFI line than in the high-RFI pigs, especially
at 2 and 24 hpi (Fig. 8). Furthermore, expression levels
of genes associated with translation, cytoplasmic

Fig. 6 Heatmap showing expression profiles of DEGs that were
responsive to LPS stimulation. Shown are 6296 genes that were
differentially expressed (|log2(fold change)|≥ log2(1.2) and q < 0.05) at
least at one time point post LPS treatment relative to baseline for
each line. HRFI, high-RFI line; LRFI, low-RFI line
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Fig. 7 (See legend on next page.)
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translation, and ribosome were higher in the low-RFI
line than in the high-RFI animals at 6 hpi, but lower at
24 hpi (Fig. 8). Expression levels of genes associated with
protein ubiquitination, cellular response to virus, glyco-
gen metabolic process, erythrocyte differentiation, re-
sponse to LPS, autophagy, innate immune response, cell

migration, and actin cytoskeleton organization were
higher in the low-RFI animals than in the high-RFI
animals at 24 hpi. However, expression levels of genes
associated with immune system process, defense re-
sponse to virus, DNA repair, smoothened signaling
pathway, complement activation via classical pathway,

(See figure on previous page.)
Fig. 7 Cross-validated representative profiles of genes that were responsive to LPS stimulation. Genes showing differential expression (|log2(fold
change)|≥ log2(1.2) and q < 0.05) post LPS injection compared to baseline were cross-validated by using independent time-series gene expression
microarray data on response of pigs’ whole blood to LPS [23]. The y-axis shows the log2 fold change of gene expression at each time point
relative to baseline, estimated by DESeq2 or limma. Smoothed expression profiles of individual genes per line were inferred by using LOWESS
(Locally Weighted Scatterplot Smoothing). HRFI, high-RFI line; LRFI, low-RFI line; Normal, pigs not selected for RFI [23]

Fig. 8 GO term-derived gene sets enriched among DEGs between the two lines at each time point. Shown are gene sets significantly (q < 0.05)
enriched at at least one time point. a-c Enriched gene sets derived from GO molecular functions (a), cellular components (b), and biological
processes (c), respectively. Values displayed as heatmaps are log10(q value) or - log10(q value), respectively, if gene sets were enriched among
genes of lower or higher expression levels in the low-RFI animals than in the high-RFI animals at a given time point. HRFI, high-RFI line; LRFI,
low-RFI line

Liu et al. BMC Genomics          (2019) 20:728 Page 14 of 24



Fig. 9 (See legend on next page.)
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positive regulation of MAPK cascade, IgG production,
and DNA biosynthesis were lower in the low-RFI ani-
mals than in the high-RFI animals at 0, 2 and/or 24 hpi
(Fig. 8).
Results of GSEA based on gene sets derived from

KEGG pathways were largely consistent with those of
GSEA based on gene sets derived from GO terms, but
provided information on the fine differences between
the two lines in terms of the dynamics of their inflam-
matory responses to LPS (Fig. 9). Expression levels of
genes associated with antigen processing and presenta-
tion, ribosome biogenesis, DNA repair and homologous
recombination, RNA transport, cell adhesion, and the
Fanconi anemia pathway were lower in the low-RFI ani-
mals than in the high-RFI animals, especially at 24 hpi.
Genes involved in the B cell receptor signaling pathway,
spliceosome, phagosome, serotonergic synapse, gluta-
matergic synapse and retrograde endocannabinoid sig-
naling had lower expression levels in the low-RFI
animals than in the high-RFI animals at 2 hpi. Gene sets
for ribosome and cytokine-cytokine receptor interaction
pathways were enriched among genes that had higher
expression levels in the low-RFI animals than in the
high-RFI animals at baseline and at 6 hpi. Gene sets for
leukocyte transendothelial migration, phototransduction,
cAMP signaling pathway, dopaminergic synapse, endo-
cytosis, thyroid hormone signaling pathway, estrogen
signaling pathway, GnRH signaling pathway and prote-
asome were enriched among genes with lower expres-
sion levels in the low-RFI animals than in the high-RFI
animals at 2 hpi, but were enriched among genes that
had higher expression levels in the low-RFI animals than
in the high-RFI animals at 6 and/or 24 hpi. Gene sets for
IL-17 signaling pathway, autophagy, mitophagy, T cell
receptor signaling pathway, apoptosis, necrosis, NOD-
like receptor signaling pathway, RIG-I-like receptor sig-
naling pathway, chemokine signaling pathway, TNF sig-
naling, toll-like receptor signaling pathway, Jak-STAT
signaling pathway, and NFκB signaling pathway were
enriched among genes that had higher expression levels
in the low-RFI animals than in the high-RFI animals at 6
and/or 24 hpi. Gene sets for pantothenate and CoA bio-
synthesis, retinol metabolism pathway, arachidonic acid
metabolism, steroid biosynthesis, and valine, leucine and
isoleucine degradation were enriched among genes
showing lower expression in the low-RFI animals than
in the high-RFI animals post LPS injection. Gene sets for

multiple KEGG disease pathways were enriched among
genes having lower expression levels in the low-RFI ani-
mals than in the high-RFI animals at 2 hpi, but these
disease pathways were enriched among genes that had
higher expression levels in the low-RFI animals than in
the high-RFI animals from 6 to 24 hpi. KEGG pathways-
based GSEA suggested that the low-RFI animals had a
lower-level inflammatory response than the high-RFI an-
imals at 2 hpi, but a higher-level inflammatory response
at 6 and 24 hpi.

Functional comparison of within-line transcriptional
responses to LPS revealed further minor differences
between the two lines
Since the two lines showed very similar expression pro-
files at baseline, we also carried out GSEA by comparing
gene expression at 2, 6 and 24 hpi to baseline for each
line separately. We then compared the enrichment level
of each set between the two lines. These analyses are
supposed to be more powerful than the enrichment ana-
lysis mentioned above because within-individual correla-
tions in gene expression were considered [58].
Results of this alternative analysis reiterated most of

the differences suggested by functional analyses of
between-line transcriptome differences. Here we only
mention some of the additional differences between the
two lines that were identified by this alternative analysis.
GO terms-derived gene sets, which were significantly
enriched among genes that changed expression levels
post LPS injection, are shown in Fig. 10. Gene sets for
innate immune response were less enriched among
genes that had higher expression levels in the low-RFI
line than in the high-RFI line at 2 and 24 hpi compared
to baseline. Gene sets for neutrophil chemotaxis and
regulation of inflammatory response were less enriched
among genes that had higher expression levels at 2, 6
and 24 hpi compared to baseline in the low-RFI line
than in the high-RFI line. Gene sets for response to mol-
ecule of bacterial origin, chemotaxis, positive regulation
of inflammatory response, negative regulation of endo-
peptidase activity, and positive regulation of IL-6 pro-
duction were less enriched among genes that had higher
expression levels at 6 and 24 hpi in the low-RFI line than
in the high-RFI line. The gene set for cilium assembly
and B cell proliferation were more and less, respectively,
enriched among genes that had lower expression levels
at 6 and 24 hpi compared to baseline in the low-RFI line

(See figure on previous page.)
Fig. 9 KEGG pathway-derived gene sets enriched among DEGs between the two lines at each time point. Shown are gene sets significantly (q <
0.01) enriched at at least one time point. a-c Enriched gene sets derived from KEGG signaling pathways (a), metabolic pathways (b), and disease
pathways (c), respectively. Values displayed as heatmaps are log10(q value) or -log10(q value), respectively, if gene sets were enriched among
genes of lower or higher expression levels in the low-RFI animals than in the high-RFI animals at a given time point. HRFI, high-RFI line; LRFI,
low-RFI line
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Fig. 10 (See legend on next page.)
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than in the high-RFI line. Gene sets for prostaglandin
biosynthesis were less enriched among genes that had
higher expression levels at 6 hpi compared to baseline in
the low-RFI line than in the high-RFI line. Gene sets for
sterol biosynthesis were less enriched among genes that
had higher expression levels at 6 hpi compared to base-
line in the low-RFI line than in the high-RFI line, but
more enriched among genes that had lower expression
levels at 2 and 24 hpi compared to baseline in the low-
RFI line than in the high-RFI line. As for metabolic dif-
ferences, gene sets for lipid catabolism and glycogen
metabolic process were more enriched among genes that
had higher expression levels at 24 hpi, and 6 and 24 hpi,
respectively, compared to baseline in the low-RFI line
than in the high-RFI line.
KEGG signaling, metabolism and disease pathways

that were significantly enriched among genes that were
responsive to LPS stimulation for each line are shown in
Additional file 17: Figure S8. Several additional enriched
gene sets that were unique to KEGG pathways-based al-
ternative analysis included the gene sets for the neuro-
trophin signaling, cAMP signaling, insulin signaling,
platelet activation, and sphingolipid signaling, and the
prolactin signaling pathways. These gene sets were more
enriched among genes of higher expression level at 6
and 24 hpi compared to baseline in the low-RFI line
than in the high-RFI line. Gene sets for fatty acid elong-
ation and butanoate metabolism were more enriched
among genes of lower expression levels at 6 and 24 hpi
compared to baseline in the low-RFI animals than in the
high-RFI pigs. Gene sets for five signaling pathways that
are closely related to inflammation, i.e. the RIG-I-like
receptor signaling, necroptosis, TNF signaling, Jak-
STAT signaling, Toll-like receptor signaling, and the
NOD-like receptor signaling, were less enriched among
genes that had higher expression levels at 2 hpi com-
pared to baseline in the low-RFI line than in the high-
RFI line, but more enriched among genes that had
higher expression levels at 6 and 24 hpi compared to
baseline in the low-RFI line than in the high-RFI line.
Along with results based on gene sets derived from
KEGG disease pathways, the differential enrichment be-
tween the two lines suggests the low-RFI line had a
lower-level inflammatory response than the high-RFI
line at 2 hpi, but a higher-level inflammatory response
at 6 and 24 hpi.

Genes co-expressed in response to LPS stimulation
showed enriched biological functions related to
inflammatory response
Lastly, gene co-expression analysis was performed to com-
plement the conventional differential expression analysis,
which considered each gene independently, and the
GSEA, which considered groups of genes with known re-
lated functions together. Given that only a few significant
line-by-time interactions were detected, we performed a
clustering analysis of the gene expression profiles of both
lines jointly to improve the stability of the clustered pro-
files. Thirty-three significant expression profiles were
identified and these were further merged into seven clus-
ters based on profile similarity (Fig. 11). Main GO terms
that were overrepresented among genes in each cluster
are shown in Fig. 11. Overrepresented GO terms among
genes in Cluster I included fatty acid beta-oxidation, mito-
chondrial part, and mitochondrial ribosome. Translation
and ribosome biogenesis were overrepresented among
genes of cluster II. Genes functioning in vacuoles, endo-
somes, and lysosomes were overrepresented among clus-
ter III genes. GO terms including signal transduction,
endocytosis, and inflammatory response were overrepre-
sented among genes in cluster IV. Genes involved in
defense response to viruses and bacteria were overrepre-
sented among clusters V and VI.

Discussion
Typically, LPS exposure in pigs can induce a febrile re-
sponse, hemodynamics, increased secretion of inflamma-
tory cytokines, tissue-specific protein translation inhibition,
and drastically changed metabolism [30, 32, 62–68]. The fe-
brile response is believed to be an adaptive response to in-
fection, which can contribute to controlling proliferation of
invading pathogens in hosts [69, 70]. It is usually mani-
fested as an increase in body temperature, typically by 0.5
to 4 °C [71]. In order for the host to maintain an elevated
body temperature, it has been estimated that for every 1 °C
increase in febrile core body temperature, the metabolic
rate of the body would increase by approximately 13% [72].
Therefore, it is reasonable to expect that the different ways
pigs perceive and respond to inflammatory agonists, such
as LPS, can contribute to differences in feed efficiency be-
tween animals. To assess this, pigs from two lines that had
been divergently selected for RFI for eight generations, were
injected with LPS to assess differential immune activation

(See figure on previous page.)
Fig. 10 GO term-derived gene sets enriched among DEGs post LPS injection relative to baseline. Shown are gene sets significantly (q < 0.01)
enriched at at least one time point. a-c Enriched gene sets derived from GO biological processes (a), cellular components (b), and molecular
functions (c), respectively. Values displayed as heatmaps are log10(q value) or - log10(q value), respectively, if gene sets were enriched among
genes of lower or higher expression levels in the low-RFI animals than in the high-RFI animals at a given time point. For better visualization,
values greater than 10 or less than − 10 were set to 10 or − 10, respectively. HRFI, high-RFI line; LRFI, low-RFI line
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that may have resulted from genetic selection on feed
efficiency.
The LPS treatment induced a systemic inflammatory re-

sponse in both lines, as evidenced by fever, and the typical
dynamic changes in WBC levels and plasma cytokines.
The change in body temperature of pigs from the high-
RFI line and the dynamics of the CBC profiles of both
lines post LPS treatment were similar to those previously
reported [23, 60, 73, 74]. Interestingly, the body
temperature of the low-RFI pigs at 4 hpi was significantly
lower than that of the high-RFI pigs, which suggests that
the low-RFI animals initiated a lower-level inflammatory
response upon systemic LPS exposure. Consistent with
this result, the plasma levels of two proinflammatory

cytokines (IL1β and IFNγ) tended to be lower in the low-
RFI line than in the high-RFI line at 2 hpi, although the
plasma levels of both cytokines increased following LPS
injection in both lines. The NLR is a marker that can be
used to detect an ongoing systemic inflammatory response
[75] and has been shown to increase in patients with can-
cer and psychiatric disorders, such as breast cancer [76]
and Alzheimer’s disease [77], both of which have an in-
flammation component. In this study, the NLR in the low-
RFI line was not different from that in the high-RFI line at
either baseline or 2 hpi, but the NLR was higher in the
low-RFI animals at both 6 and 24 hpi compared to the
high-RFI line. A similar change in NLR during LPS stimu-
lation was reported by Kvidera et al. [62]. The dynamic

Fig. 11 Clusters of significant expression profiles of genes responsive to LPS stimulation. Thirty-three significant profiles were clustered into seven
clusters (shown on the left) based on profile similarities (correlation cutoff ≥0.6) by using STEM. Profiles of the same color belong to the same
cluster. Profile IDs, sizes, and significance (p values) are shown on the upper left, upper right and lower right corners of individual profile plots,
respectively. Significantly overrepresented GO terms by each cluster are displayed on the right. The number of genes and q values associated
with a significant term are displayed in the parentheses

Liu et al. BMC Genomics          (2019) 20:728 Page 19 of 24



changes in NLR and rectal temperature suggested that the
low-RFI line initiated a slightly lower-level inflammatory
response than the high-RFI line, but the inflammation was
resolved slightly more slowly in the low-RFI line than in
the high-RFI line.
By global gene expression profiling of peripheral blood

cells before and after LPS injection, only a small number
of DEGs between the two lines were identified at each
time point. However, slight differences in the biological
processes and pathways between the two lines in re-
sponse to LPS exposure were detected using more
powerful and sensitive functional annotation tools. Func-
tional analysis of the small number of between-line
DEGs at each time point by GOA suggest that some bio-
logical processes that occurred post LPS injection were
different between the two lines, including heme biosyn-
thesis and antigen processing and presentation of pep-
tide or polysaccharide antigen via MHC class II. GSEA
of gene expression differences between the two lines at
each time point reiterated and extended the findings
from the GOA. These functional analyses suggested that
compared to baseline, expression levels of genes related
to heme biosynthesis were up-regulated at 2 hpi,
returned to baseline at 6 hpi, and were further down-
regulated at 24 hpi. However, the extent to which these
genes were down-regulated after 2 hpi was smaller in
the low-RFI animals than in the high-RFI pigs. Heme is
a multi-functional, ubiquitously expressed essential mol-
ecule in higher animals [78]. As a component of
hemoglobin, it facilitates gas exchange by binding oxy-
gen and CO2. Notably, the inflammatory process is asso-
ciated with an increased oxygen demand [32]. Thus,
increased heme biosynthesis might help alleviate the in-
creased oxygen demand, allowing the low-RFI animals to
better handle hypoxia induced by an inflammatory re-
sponse. Interestingly, Jégou et al. [12] reported that the
concentration of RBCs at a young age was significantly
higher in the INRA low-RFI line than in the high-RFI
line. We also observed that the average concentration of
RBCs and hemoglobin tended to be higher in the low-
RFI pigs than in the high-RFI pigs at baseline, and at 6
and 24 hpi (Additional file 5: Figure S1), which was con-
sistent with another study on the ISU RFI lines [10]. On
the other hand, it is also known that LPS can induce
hemolysis [79], which leads to a release of hemoglobin
and free heme from RBCs. Notably, free heme is cyto-
toxic and can enhance the generation of reactive oxygen
species (ROS), inflammation, and apoptosis by activating
specific receptors, including the TLR4 signaling pathway
[80]. It would be interesting to investigate the concentra-
tion of free heme in blood in the two lines, since the
low-RFI animals might have slightly higher levels of
heme biosynthesis and potentially higher levels of free
heme in circulation.

Both GSEA and GOA also suggested that the low-RFI
line differed from the high-RFI line in antigen processing
and presentation via MHC class II, especially at 2 and 24
hpi. Expression levels of six MHC class II genes were
significantly lower in the low-RFI line compared to the
high-RFI line at 24 hpi (Additional file 16: Figure S7).
Thus, blood cells in the low-RFI line might process and
present exogenous antigens via MHC class II at a re-
duced capacity when compared to the cells in high-RFI
line during the resolving phase of the systemic inflam-
matory response. This observation is in line with find-
ings from previous in vitro studies of PBMC responses
to LPS stimulation in pigs and rabbits [27, 81]. The
physiological effects of lower expression levels of MHC
II genes after LPS stimulation in the low-RFI line com-
pared to the high-RFI line is unclear, as is its potential
contribution to differences in feed efficiency between the
two lines. However, evidence from both an experimental
dual challenge of these ISU RFI lines with Mycoplasma
hyopneumoniae and Lawsonia intracellularis and a study
where the INRA RFI lines were exposed to less unsani-
tary housing conditions suggests that low-RFI pigs per-
form as well as, or even better than, high-RFI pigs under
such immune challenges [82, 83]. Therefore, the lower
expression levels of MHC class II genes in the low-RFI
animals compared with the high-RFI animals might not
be detrimental during health challenges.
Tissue-specific translational inhibition in response to

infection is widely observed in multiple species, from in-
vertebrates to mammals [84]. In rodents and pigs, it has
been shown that LPS stimulation reduces skeletal
muscle protein synthesis by modulating activities and
availability of translation initiation factors through the
mTOR pathway [64, 65, 85–87]. Here, we found genes
that encode components of the ribosome and other
translational machinery, including translation initiation
factors and translation elongation factors, were down-
regulated in response to LPS stimulation at 6 and 24 hpi
in both lines. Notably, gene sets for ribosome and trans-
lation machinery were more enriched in down-regulated
genes in the high-RFI line than in the low-RFI line at 6
hpi. In contrast, at 24 hpi, they were more enriched in
down-regulated genes in the low-RFI line than in the
high-RFI line. The expression levels of ribosomal
protein-encoding genes were higher in the low-RFI ani-
mals than in the high-RFI animals at baseline, and at 2
and 6 hpi (Fig. 8), but lower in the low-RFI animals than
in the high-RFI animals at 24 hpi. These results suggest
that protein synthesis might be less suppressed in the
low-RFI animals than in the high-RFI animals post LPS
injection until some point between 6 and 24 hpi. Con-
sistent with these results, the basal expression level of
genes involved in translation elongation were higher in
multiple tissues, including whole blood, in low-RFI pigs
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compared to high-RFI pigs [12, 13]. It is unclear whether
translation inhibition is a true direct sensor of bacterial
pathogens or an indicator of a more general host meta-
bolic stress response to LPS [84], although a recent
study reported that translational inhibition plays an im-
portant role in negative feedback regulation of the in-
flammatory response in macrophages [88]. However, if
protein translation machinery in skeletal muscle is also
less inhibited in the low-RFI pigs than in the high-RFI
pigs as seen in the peripheral blood during LPS stimula-
tion, this will at least partially explain why the low-RFI
line is more feed-efficient than the high-RFI line.
Both clinical and global transcriptomic data suggested

that these two lines divergently selected for RFI had a
similar systemic inflammatory response triggered by LPS
injection. However, the low-RFI line initiated a less strik-
ing but longer-lasting inflammatory response post LPS
stimulation than the high-RFI line. Three lines of previous
evidence support our results: (1) low-RFI animals had
lower basal levels of serum acute phase protein (haptoglo-
bin), an indication of lower basal inflammation, than high-
RFI animals from the seventh generation of the same se-
lected lines as used in this study [89]; (2) blood expression
levels of genes involved in defense responses, as well as in-
flammatory and immune responses, were lower in the
low-RFI pigs than in the high-RFI pigs [12]; and (3) ex-
pression levels of genes that participate in immune re-
sponse, cytokine production and defense responses were
lower in multiple tissues in the INRA low-RFI pigs than in
the high-RFI pigs [13]. A slightly reduced inflammatory
response might reduce the energy used during this re-
sponse, as well as restrict self-damage due to inflamma-
tion. Such genetic differences may be beneficial for pig
production if the existing level of inflammation is enough
for the host to remove pathogens and recover from infec-
tion. Furthermore, as mentioned previously, both a 21-day
longitudinal study where the two ISU RFI lines were
dually challenged with M. hyopneumoniae and L. intracel-
lularis and another study where the INRA RFI lines were
housed in a less sanitary environment indicated that low-
RFI animals performed as well as, or even better than,
high-RFI animals under real-life health challenge condi-
tions [82, 83]. Thus, it is reasonable to assume that the
slightly lower level of inflammatory response in the low-
RFI line than in the high-RFI line is not detrimental, if
there is any side effect.
Finally, we acknowledge the limitations of our RNA-

seq differential expression analysis and GOA since we
did not consider the within-animal correlation of gene
expression between time points. Our resulting DEG lists
may not be complete or may contain false positives,
which could affect GOA results that are based on DEG
lists. However, the overall conclusions would not be ser-
iously affected for the following reasons: 1) all the

clinical and RT-qPCR data, which were consistent with
the transcriptomic data, were analyzed using methods
that properly considered within-animal correlations be-
tween time points; 2) in addition to DESeq2-based dif-
ferential expression analysis and the GOA, we
performed GSEA and STEM-based profile analysis,
which accounted for the within-animal correlations and
the results from these two analyses were largely consist-
ent with the results from the former two analyses.

Conclusions
Pigs divergently selected for RFI responded to LPS ex-
posure with a systemic inflammatory response that was
largely similar between the low-RFI and high-RFI lines.
However, the low-RFI animals had a lower level of in-
flammation initially and took slightly longer to resolve
the inflammation than the high-RFI animals. Our work
indicates that selection for feed efficient based on RFI
did not significantly compromise the pig’s capability to
respond to an acute systemic inflammatory trigger.
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