608 research outputs found

    A new model for the structure of the DACs and SACs regions in the Oe and Be stellar atmospheres

    Full text link
    In this paper we present a new mathematical model for the density regions where a specific spectral line and its SACs/DACs are created in the Oe and Be stellar atmospheres. In the calculations of final spectral line function we consider that the main reasons of the line broadening are the rotation of the density regions creating the spectral line and its DACs/SACs, as well as the random motions of the ions. This line function is able to reproduce the spectral feature and it enables us to calculate some important physical parameters, such as the rotational, the radial and the random velocities, the Full Width at Half Maximum, the Gaussian deviation, the optical depth, the column density and the absorbed or emitted energy. Additionally, we can calculate the percentage of the contribution of the rotational velocity and the ions' random motions of the DACs/SACs regions to the line broadening. Finally, we present two tests and three short applications of the proposed model.Comment: 9 pages, 5 figures, accepted for publication in PAS

    Lifetime Measurement of the 8s Level in Francium

    Full text link
    We measure the lifetime of the 8s level on a magneto-optically trapped sample of ^{210}Fr atoms with time-correlated single-photon counting. The 7P_{1/2} state serves as the resonant intermediate level for two-photon excitation of the 8s level completed with a 1300 nm laser. Analysis of the fluorescence decay through the the 7P_{3/2} level gives 53.30 +- 0.44 ns for the 8s level lifetime.Comment: 4 pages, 4 figure

    A neuronal-specific differentiation protein that directly modulates retinoid receptor transcriptional activation

    Get PDF
    BACKGROUND: The specificity of a nuclear receptor's ability to modulate gene expression resides in its ability to bind a specific lipophilic ligand, associate with specific dimerization partners and bind specific DNA sequences in the promoter regions of genes. This sequence of events appears to be the basis for targeting an additional regulatory complex composed of a variety of protein and RNA components that deliver signals for facilitation or inhibition of the RNA polymerase complex. Characterization of the tissue and cell-specific components of these coregulatory complexes appear to be integral to our understanding of nuclear receptor regulation of transcription. RESULTS: A novel yeast screen sensitive to retinoid-X receptor (RXR) transcriptional activation resulted in the isolation of the rat homologue of the mouse NPDC-1 gene. NPDC-1 has been shown to be involved in the control of neural cell proliferation and differentiation, possibly through interactions with the cell cycle promoting transcription factor E2F-1. Although the amino acid sequence of NPDC-1 is highly conserved between mouse, rat and human homologues, their tissue specific expression was seen to vary. A potential for direct protein:protein interaction between NPDC-1, RXR and retinoic acid receptor beta (RARβ) was observed in vitro and NPDC-1 facilitated RXR homodimer and RAR-RXR heterodimer DNA binding in vitro. Expression of NPDC-1 was also observed to repress transcription mediated by retinoid receptors as well as by several other nuclear receptor family members, although not in a universal manner. CONCLUSIONS: These results suggest that NPDC-1, through direct interaction with retinoid receptors, functions to enhance the transcription complex formation and DNA binding function of retinoid receptors, but ultimately repress retinoid receptor-mediated gene expression. As with NPDC-1, retinoids and their receptors have been implicated in brain development and these data provide a point of convergence for NPDC-1 and retinoid mediation of neuronal differentiation

    In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas

    Get PDF
    Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced

    Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of Cesium

    Full text link
    We present and experimental and theoretical study of nonlinear magneto-optical resonances observed in the fluorescence to the ground state from the 7P_{3/2} state of cesium, which was populated directly by laser radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were populated via cascade transitions that started from the 7P_{3/2} state and passed through various intermediate states. The laser-induced fluorescence (LIF) was observed as the magnetic field was scanned through zero. Signals were recorded for the two orthogonal, linearly polarized components of the LIF. We compared the measured signals with the results of calculations from a model that was based on the optical Bloch equations and averaged over the Doppler profile. This model was adapted from a model that had been developed for D_1 and D_2 excitation of alkali metal atoms. The calculations agree quite well with the measurements, especially when taking into account the fact that some experimental parameters were only estimated in the model.Comment: small changes to text of previous version; 12 pages, 8 figure

    Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field

    Full text link
    We report the first use of an extremely thin vapor cell (thickness ~ 400 nm) to study the magnetic-field dependence of laser-induced-fluorescence excitation spectra of alkali atoms. This thin cell allows for sub-Doppler resolution without the complexity of atomic beam or laser cooling techniques. This technique is used to study the laser-induced-fluorescence excitation spectra of Rb in a 50 G magnetic field. At this field strength the electronic angular momentum J and nuclear angular momentum I are only partially decoupled. As a result of the mixing of wavefunctions of different hyperfine states, we observe a nonlinear Zeeman effect for each sublevel, a substantial modification of the transition probabilities between different magnetic sublevels, and the appearance of transitions that are strictly forbidden in the absence of the magnetic field. For the case of right- and left- handed circularly polarized laser excitation, the fluorescence spectra differs qualitatively. Well pronounced magnetic field induced circular dichroism is observed. These observations are explained with a standard approach that describes the partial decoupling of I and J states

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    A primordial star in the heart of the Lion

    Full text link
    Context: The discovery and chemical analysis of extremely metal-poor stars permit a better understanding of the star formation of the first generation of stars and of the Universe emerging from the Big Bang. aims: We report the study of a primordial star situated in the centre of the constellation Leo (SDSS J102915+172027). method: The star, selected from the low resolution-spectrum of the Sloan Digital Sky Survey, was observed at intermediate (with X-Shooter at VLT) and at high spectral resolution (with UVES at VLT). The stellar parameters were derived from the photometry. The standard spectroscopic analysis based on 1D ATLAS models was completed by applying 3D and non-LTE corrections. results: An iron abundance of [Fe/H]=--4.89 makes SDSS J102915+172927 one of the lowest [Fe/H] stars known. However, the absence of measurable C and N enhancements indicates that it has the lowest metallicity, Z<= 7.40x10^{-7} (metal-mass fraction), ever detected. No oxygen measurement was possible. conclusions: The discovery of SDSS J102915+172927 highlights that low-mass star formation occurred at metallicities lower than previously assumed. Even lower metallicity stars may yet be discovered, with a chemical composition closer to the composition of the primordial gas and of the first supernovae.Comment: To be published in A&

    Non-LTE line formation for heavy elements in four very metal-poor stars

    Full text link
    Stellar parameters and abundances of Na, Mg, Al, K, Ca, Sr, Ba, and Eu are determined for four very metal-poor stars (-2.66 < [Fe/H] < -2.15) based on non-LTE line formation and analysis of high-resolution (R ~60000 and 90000) high signal-to-noise (S/N > 200) observed spectra. A model atom for H I is presented. An effective temperature was obtained from the Balmer Halpha and Hbeta line wing fits, the surface gravity from the Hipparcos parallax if available and the non-LTE ionization balance between Ca I and Ca II. Based on the hyperfine structure affecting the Ba II resonance line, the fractional abundance of the odd isotopes of Ba was derived for HD 84937 and HD 122563 from a requirement that Ba abundances from the resonance line and subordinate lines of Ba II must be equal. For each star, non-LTE leads to a consistency of Teff from two Balmer lines and to a higher temperature compared to the LTE case, by up to 60 K. Non-LTE effects are important in spectroscopic determination of surface gravity from Ca I/Ca II. For each star with a known trigonometric gravity, non-LTE abundances from the lines of two ionization stages agree within the error bars, while a difference in the LTE abundances consists of 0.23 dex to 0.40 dex for different stars. Departures from LTE are found to be significant for the investigated atoms, and they strongly depend on stellar parameters. For HD 84937, the Eu/Ba ratio is consistent with the relative solar system r-process abundances, and the fraction of the odd isotopes of Ba, f_odd, equals 0.43+-0.14. The latter can serve as a constraint on r-process models. The lower Eu/Ba ratio and f_odd = 0.22+-0.15 found for HD 122563 suggest that the s-process or the unknown process has contributed significantly to the Ba abundance in this star.Comment: accepted for publication in A&A, November 16, 200
    • …
    corecore