412 research outputs found
Induction of annexin-1 at transcriptional and posttranscriptional level in rat brain by methylprednisolone and the 21-aminosteroid U74389F
Jan Kornelis de Cock-Foundation
How Many Subpopulations is Too Many? Exponential Lower Bounds for Inferring Population Histories
Reconstruction of population histories is a central problem in population
genetics. Existing coalescent-based methods, like the seminal work of Li and
Durbin (Nature, 2011), attempt to solve this problem using sequence data but
have no rigorous guarantees. Determining the amount of data needed to correctly
reconstruct population histories is a major challenge. Using a variety of tools
from information theory, the theory of extremal polynomials, and approximation
theory, we prove new sharp information-theoretic lower bounds on the problem of
reconstructing population structure -- the history of multiple subpopulations
that merge, split and change sizes over time. Our lower bounds are exponential
in the number of subpopulations, even when reconstructing recent histories. We
demonstrate the sharpness of our lower bounds by providing algorithms for
distinguishing and learning population histories with matching dependence on
the number of subpopulations. Along the way and of independent interest, we
essentially determine the optimal number of samples needed to learn an
exponential mixture distribution information-theoretically, proving the upper
bound by analyzing natural (and efficient) algorithms for this problem.Comment: 38 pages, Appeared in RECOMB 201
P04.06. Complementary and alternative medicine in the treatment of pain in fibromyalgia: a systematic review of randomized controlled trials
Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans
Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians
Recommended from our members
GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses
Detailed understanding of the signaling intermediates that confer the sensing of intracellular viral nucleic acids for induction of type I interferons is critical for strategies to curtail viral mechanisms that impede innate immune defenses. Here we show that the activation of the microtubule-associated guanine nucleotide exchange factor GEF-H1, encoded by Arhgef2, is essential for sensing of foreign RNA by RIG-I-like receptors. Activation of GEF-H1 controls RIG-I and Mda5-dependent phosphorylation of IRF3 and induction of interferon-β expression in macrophages. Generation of Arhgef2−/− mice revealed a pronounced signaling defect that prevented antiviral host responses to encephalomyocarditis virus and influenza A virus. Microtubule networks sequester GEF-H1 that upon activation is released to enable antiviral signaling by intracellular nucleic acid detection pathways
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Inequalities in the Green Transition: The Predistributive Power of Infrastructures
Mit der zunehmenden Berücksichtigung von Ungleichheitsdimensionen im Klimaschutz wird die Soziologie für die Forschung immer wichtiger. Sie erweitert die Perspektive auf sozial ex- oder inklusiven Klimaschutz, indem sie über konventionelle Umverteilungspolitiken hinaus (Abgaben, Subventionen etc.) die „prädistributiven“ Mechanismen von Infrastrukturen offenlegt. Soziomaterielle Pfadabhängigkeiten definieren Ausmaß und Inzidenz von Investitions- sowie Abschreibungsbedarfen; Institutionen prägen die Machtpositionen von Anbietern und Verbrauchern. Wir zeigen anhand einer komparativen Analyse der Wärmewenden in Dänemark und Deutschland, wann Infrastrukturen politisch mobilisierbare Verlierergruppen schaffen und wann sie Haushalte mit geringen Ressourcen in einen als legitim wahrgenommenen Klimaschutz integrieren. Auf Basis dieser historischen Analyse präsentieren wir eine eigene Interpretation der massiven Opposition gegen das „Heizungsgesetz“ in Deutschland. Diese wurde von einer breiten Infrastruktur-Allianz rund um Erdgas getragen, die das Argument der Sozialverträglichkeit gegen Klimaschutzbemühungen ausspielte.The salience of inequality in climate change mitigation opens up opportunities for sociologists to play a more prominent role in this research field. The discipline is particularly well placed to broaden the perspective on socially exclusive or inclusive versions of mitigation beyond conventional redistributive policies (taxes, subsidies etc.), to look at the “predistributive” mechanisms embedded in infrastructures. Socio-material path dependencies define the extent and incidence of investment needs and asset stranding; institutions shape the power positions of suppliers and consumers. By comparing the “heat transitions” in Denmark and Germany, we show when infrastructures create politically mobilizable loser groups, and when they integrate households with limited resources into broadly legitimated energy transitions. On the basis of our approach, we show that the massive opposition against the so-called “heating law” in Germany emerged from a broad infrastructure alliance around gas that was able to use the argument of social justice against decarbonization
Search for short baseline nu(e) disappearance with the T2K near detector
8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
The Receptor Slamf1 on the Surface of Myeloid Lineage Cells Controls Susceptibility to Infection by Trypanosoma cruzi
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1−/− mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1−/− mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection
Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector
10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR
- …
