127 research outputs found

    Ratkaisuja lannankäsittelypulmiin etsitään

    Get PDF

    Proinsulin is stable at room temperature for 24 hours in EDTA:A clinical laboratory analysis (adAPT 3)

    Get PDF
    AIMS:Reference laboratories advise immediate separation and freezing of samples for the assay of proinsulin, which limit its practicability for smaller centres. Following the demonstration that insulin and C-peptide are stable in EDTA at room temperature for at least 24hours, we undertook simple stability studies to establish whether the same might apply to proinsulin. METHODS:Venous blood samples were drawn from six adult women, some fasting, some not, aliquoted and assayed immediately and after storage at either 4°C or ambient temperature for periods from 2h to 24h. RESULTS:There was no significant variation or difference with storage time or storage condition in either individual or group analysis. CONCLUSION:Proinsulin appears to be stable at room temperature in EDTA for at least 24h. Immediate separation and storage on ice of samples for proinsulin assay is not necessary, which will simplify sample transport, particularly for multicentre trials

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Multi-Omics Integration in a Twin Cohort and Predictive Modeling of Blood Pressure Values

    Get PDF
    Abnormal blood pressure is strongly associated with risk of high-prevalence diseases, making the study of blood pressure a major public health challenge. Although biological mechanisms underlying hypertension at the single omic level have been discovered, multi-omics integrative analyses using continuous variations in blood pressure values remain limited. We used a multi-omics regression-based method, called sparse multi-block partial least square, for integrative, explanatory, and predictive interests in study of systolic and diastolic blood pressure values. Various datasets were obtained from the Finnish Twin Cohort for up to 444 twins. Blocks of omics-including transcriptomic, methylation, metabolomic-data as well as polygenic risk scores and clinical data were integrated into the modeling and supported by cross-validation. The predictive contribution of each omics block when predicting blood pressure values was investigated using external participants from the Young Finns Study. In addition to revealing interesting inter-omics associations, we found that each block of omics heterogeneously improved the predictions of blood pressure values once the multi-omics data were integrated. The modeling revealed a plurality of clinical, transcriptomic, and metabolomic factors consistent with the literature and that play a leading role in explaining unit variations in blood pressure. These findings demonstrate (1) the robustness of our integrative method to harness results obtained by single omics discriminant analyses, and (2) the added value of predictive and exploratory gains of a multi-omics approach in studies of complex phenotypes such as blood pressure

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE
    corecore