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Abstract

Abnormal blood pressure is strongly associated with risk of high-prevalence diseases, making the study of blood
pressure a major public health challenge. Although biological mechanisms underlying hypertension at the single
omic level have been discovered, multi-omics integrative analyses using continuous variations in blood pressure
values remain limited. We used a multi-omics regression-based method, called sparse multi-block partial least
square, for integrative, explanatory, and predictive interests in study of systolic and diastolic blood pressure
values. Various datasets were obtained from the Finnish Twin Cohort for up to 444 twins. Blocks of omics—
including transcriptomic, methylation, metabolomic—data as well as polygenic risk scores and clinical data
were integrated into the modeling and supported by cross-validation. The predictive contribution of each omics
block when predicting blood pressure values was investigated using external participants from the Young Finns
Study. In addition to revealing interesting inter-omics associations, we found that each block of omics hetero-
geneously improved the predictions of blood pressure values once the multi-omics data were integrated. The
modeling revealed a plurality of clinical, transcriptomic, and metabolomic factors consistent with the literature
and that play a leading role in explaining unit variations in blood pressure. These findings demonstrate (1) the
robustness of our integrative method to harness results obtained by single omics discriminant analyses, and (2)
the added value of predictive and exploratory gains of a multi-omics approach in studies of complex phenotypes
such as blood pressure.

Keywords: hypertension, blood pressure, twins, multi-omics, phenomics, predictive modeling, sparse multi-
block partial least square

Introduction

Hypertension is a pathological elevation of blood
pressure associated with greater risk of high-prevalence

diseases. In particular, hypertension is known to increase the

risk of cardiovascular disease ( Jordan et al., 2018) as well
as cerebrovascular and renal diseases (Kelly and Rothwell,
2020; Ku et al., 2019), making its study of major public
health importance. In addition to its broad effects, hyperten-
sion has multiple origins, including environmental causes
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such as nutrition and excessive alcohol consumption (Puddey
et al., 2019; Schwingshackl et al., 2017). It also has a substan-
tial genetic component, as demonstrated by twin and molec-
ular genetic studies (Arnett and Claas, 2018). The existence
of genetic and environmental influences on blood pressure
further motivates the use of omics data.

The advent of high-throughput technologies has made it
possible to obtain sufficiently large volumes of data to
highlight significant findings and to gain insight into the bi-
ological mechanisms underlying hypertension. Many studies
have thus examined the structural and functional genomics of
blood pressure using genetic variants and transcriptomics,
respectively (Huang et al., 2020; Surendran et al., 2020).
Environmental influences have also been investigated, for
example, through methylation studies and high-throughput
clinical phenotypes in the field of phenomics (Irvin et al.,
2021).

Although biological mechanisms underlying hypertension
at the single omic level have been discovered, multi-omics
integrative analyses using continuous variations in blood
pressure values remain limited. Evaluation of the integrated
predictive value of various molecular substrates of hyper-
tension is also actively being pursued (Baek et al., 2020;
Kwong et al., 2018; Wang et al., 2018). A better under-
standing of the mechanisms reflecting unitary changes in
blood pressure could allow for fine mapping of interindi-
vidual differences than those captured by discriminant or
categorical analyses. Binary discretization of individuals into
normotensive and hypertensive status fails to capture risk
factors likely to increase or decrease blood pressure within
the normotensive or hypertensive patient groups.

Integration across multiple omics knowledge domains to
dissect the phenotypes associated with blood pressure reg-
ulation and hypertension is much needed in the present
moment. It is in response to these challenges and prospects
that this study was undertaken.

We integrated blood pressure data, specifically transcrip-
tomic, methylation, clinical, metabolomic, and polygenic
risk scores (PRS) from participants of the Finnish Twin
Cohort (FTC) to gain insight into the intra- and inter-omics
biological mechanisms underlying unitary increases in sys-
tolic blood pressure (SBP) and diastolic blood pressure
(DBP). We also present the predictive performance of each
of these omics blocks within a multi-omics model based on
a regression-type method called sparse multi-block partial
least square (sMBPLS). Predictive performance was assessed
by comparing the predictions of SBP and DBP values in a test
cohort of substantial size with their measured values.

Materials and Methods

Data blocks and sources

The study protocol was approved by the Institutional
Ethics Board of the Hospital District of Helsinki and Uusi-
maa, Finland (ID 154/13/03/00/11) and the Institutional Re-
view Board of Augusta University. Omics datasets were
obtained from within the FTC (Kaprio et al., 2019) for up to
444 twins, and all applicable written and informed consent
was obtained in relation to the data generated or used for
analysis.

Twins were selected based on responses to items on blood
pressure and hypertension in the fourth survey of the FTC in

2011–2012; twin pairs with a difference in blood pressure
were targeted, as previously described in detail (Kaprio et al.,
2019). The twins came in for 1 day of measurement of blood
pressure, completed interviews and questionnaires and pro-
vided a fasting blood sample for biochemical measures, and
samples for omics. In addition, weight, height, and waist
and hip circumference were measured (Tuomela et al., 2019).

In total, clinical, metabolomic, methylation, transcripto-
mic, and PRS data were collected for a subset of this initial
number of participants. Metabolomic data for 434 participants
were collected with nuclear magnetic resonance spectroscopy
and included in the study. The proportion of individuals with
methylation (Illumina 450k) and transcriptomic data (Micro-
array) was lower (360 participants for methylation, 389 par-
ticipants for transcriptomic data) (Fig. 1). Four PRSs related to
SBP, DBP, body mass index (BMI), and coronary artery dis-
ease (CAD) were also included.

The preprocessing steps of each omics block before inte-
gration into the model sometimes required, for example,
imputation of missing values and selection of variables
(Supplementary Document, Section S1). Once these pre-
processing steps were completed, four omics blocks of dif-
ferent dimensions were considered for the modeling phase
(Fig. 1) (Abayomi et al., 2005; Aryee et al., 2014; Benton
et al., 2017; Boks et al., 2009; Cazaly et al., 2016; Domingo-
Relloso et al., 2021; Du et al., 2008; Friedman et al., 2010;
Hayati Rezvan et al., 2015; Honaker et al., 2011; Kaprio
et al., 1987; Keil et al., 1991; Lin et al., 2008; Nikpay et al.,
2015; Price et al., 2006; Salvador et al., 2019; Triche et al.,
2013; van Buuren and Groothuis-Oudshoorn, 2011; Vila-
plana, 2006; Waldmann et al., 2013; Yengo et al., 2018; and
Zou and Hastie, 2005).

In addition to the FTC participants, data from the Young
Finns Study (YFS) (Raitakari et al., 2008) were used for the
predictive phase of our study. This test cohort consists of a
total of 1350 participants for whom the same omics blocks as
described above for the FTC were available (Supplementary
Document, Section S2 for details of the methylation pre-
processing methodology) (Ahola-Olli et al., 2019; Elovainio
et al., 2015; McCartney et al., 2021; Soininen et al., 2015;
Võsa et al., 2021). A large number of variables within
each block have been retrieved, although some were missing
(Performance Criteria and Data Linkage sections). Clinical
differences between the YFS and FTC cohorts were note-
worthy, as reflected in the blood pressure values and age
distributions (Table 1).

Integrative methods

Latent structures and integration. Partial least square
(PLS) regressions, sometimes referred to as latent structure
projections, are a family of methods that proceed by deriving
latent variables defined as linear combinations of variables
(Abdi and Williams, 2013). One of these PLS-based methods
adapted to a multi-omics context, called sMBPLSs, was used
to integrate the different omics blocks into a single model.
sMBPLS calculates latent components for each block (here-
after referred to as block-related components) and for the
outcome matrix Y before averaging the block-related com-
ponents to obtain upscaled latent components (Li et al.,
2012). These computations were carried out by iteratively
maximizing the covariance between the latent components,
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defined as weighted sums of the block-related components,
and the latent components of the Y matrix.

This method therefore expresses Q omics block matrices
X1,.,XQ as matrix products of block-related components by
loading vectors (Q = 4 in this study), and provides upscaled
latent components used in our study to predict a two-
dimensional Y matrix composed of the SBP and DBP variables.

The sMBPLS modeling was performed using methods
implemented in the mixOmics R package (Rohart et al.,
2017). In addition to the classical sMBPLS structure, the
mixOmics package introduces a so-called design matrix,
allowing for linking each omics block to influence the
covariance maximization phase (Lê Cao and Welham, 2021).
This Q · Q design matrix, commonly noted as C, associates
an omics block to another omics block using a coefficient
defined on the segment [0,1] (0 = no link, 1 = complete as-
sociation). Because the choice of this matrix is based on

a priori and observational choices, we used all the partici-
pants who did not have their co-twin (Fig. 1) among the initial
330 to estimate this matrix, resulting in the selection of 20
participants, hereafter called singletons.

This exploratory approach allowed us to tune the design
matrix (Supplementary Document, Section S3 and Supple-
mentary Fig. S1 and Supplementary Table S1) by introducing
a metric weighting the systolic and diastolic root mean
square error (RMSE). Two nonzero omics block associations
minimized this metric: a moderate association (0.4) between
the Metabolomics and Clinical_PRS blocks as well as a
weak association (0.1) between the methylation and tran-
scriptomics blocks. The design matrix was therefore set ac-
cordingly. Each block Xi was also penalized with a penalty
term ki that enables variable selection in each omics block.
These ki,., kQ (Q = 4) constrain the number of variables
within each block.

FIG. 1. Study design diagram. The study design is structured into three main phases: a preprocessing phase at the scale of
each omic, a multi-omic modeling phase and a prediction phase. #, number; DBP, diastolic blood pressure; dim, dimension;
DZ, dizygotic; F, female; M, male; MZ, monozygotic; NA, missing value; SBP, systolic blood pressure; Var., variable.
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To avoid defining sparsity arguments and the number of
components (k) based on a biological a priori, we im-
plemented a cross-validation procedure in a mixOmics
framework to automatically select the best combination (k*,
k�1, . . . , k�Q), minimizing a criterion called cross-validation
score (CV score) (Supplementary Document, Section S4)
(Li et al., 2012).

Cross-validation procedure. Links between sMBPLS
and traditional methods such as principal component analysis
(PCA) exist, insofar as PCA aims to summarize information
from linear combinations of variables to project individuals
into a reduced space built from components. Within the
framework of PCA, some tools make it possible to establish
an optimal number of components to be selected to optimize
the explained variance wisely; one can note the use of elbow
or Kaiser criteria as examples. In the sMBPLS framework,
this selection is more subtle and no automatic mixOmics
method exists when it comes to a quantitative Y matrix to
be regressed: cross-validation is only available for the dis-
criminant version of sMBPLS, called sMBPLS-DA. The
main drawback of the sMBPLS-DA cross-validation pro-
cedure is the computational time cost, because the sparsity
arguments applied to each block as well as the number of
components k make rapid increase in the number of modeling
combinations to be tested.

With the awareness of the potential computational short-
comings of this type of cross-validation procedure, we imple-
mented a self-governed cross-validation tailored to sMBPLS
(Li et al., 2012) in R using the features of mixOmics (Sup-
plementary Document, Section S4). A total of N = 310 indi-
viduals were therefore distributed into L = 10 groups before
training L models on N - N/L individuals to derive the
loadings and weight vectors. A CV score was calculated at
each iteration, for each combination of sparsity arguments ki

(i = 1,.,Q) and number of components k. The best model
combination minimizes the CV score.

Predictive methods

Data linkage. Although all blocks were overlapped in the
YFS test cohort, the variables in each block were only subsets
of the variables in the corresponding block in the FTC cohort.
Of the clinical data, almost one-third of the variables were
not retrieved in the YFS data. Lymphocytes, neutrophils, B
neutrophils, B lymphocytes, and the two PRS variables for
SBP and DBP were not available. The PRS for CAD risk and
the PRS for BMI were obtained using a p-value threshold of
10-5 (Võsa et al., 2021). Only 5 of the 105 metabolomic
variables were missing in the YFS data; the other 100 vari-
ables did not suffer from missing values.

YFS methylation data were obtained from Illumina EPIC,
and the b-values were computed (Supplementary Document,
Section S2). CpG site selection was carried out by name
linkage with the FTC methylation data, leading to the se-
lection of 463 methylation variables from the original 545.
The selection of transcriptomic variables was more subtle, as
several probes pointed to the same genes (MYADM, CD97).
To match each probe obtained with FTC data and those
available within the YFS data, a linkage by ProbeID was
performed. A total of 66 YFS transcriptomic variables were
thus retrieved, whereas there were 81 in the FTC data.

A consequence of missing variables and cohort heteroge-
neity may be a significant bias in predictions. The absence of a
few clinical variables with strong predictive power should be
avoided even if the mixOmics package allows predictions to be
made from partially missing data. To reduce the discrepancies
in predictions, a correction for batch effect using the Combat
method (Leek et al., 2012) on transcriptomic and methylation
data was carried out (Supplementary Document, Section S5
and Supplementary Fig. S2). This correction resulted in a re-
duction of the dimensions of the FTC transcriptomic and
methylation datasets, as the batch correction imposes the same
FTC and YFS variables. This operation was necessary as
predictions without batch-effect correction proved unreliable
because the prediction errors were particularly high.

Table 1. Description of the Finnish Twin Cohort and the Young Finns Study Participants

Statistic N Mean Standard deviation Min Pctl(25) Pctl(75) Max

Finnish twin cohort
SBP 330 150.68 20.20 102.00 137.00 163.20 230.00
DBP 330 85.61 11.94 58.00 77.00 92.50 126.50
Sex 330 138M/192F
Age 330 62.31 3.82 55.85 59.29 65.54 69.69
BMI 330 27.32 4.73 18.06 24.00 29.60 45.91
Alc 328 327.77 442.14 0.00 83.20 385.50 4928.70
Waist 330 94.65 14.39 60.00 85.00 103.00 140.00

Young Finns Study
SBP 1350 119.21 14.31 83.00 109.30 127.30 179.00
DBP 1350 75.31 10.61 44.00 68.00 81.33 113.33
Sex 1350 733M/617F
Age 1350 41.63 5.09 34.00 37.00 46.00 49.00
BMI 1347 26.66 5.06 16.49 23.23 29.26 58.47
Alc 1249 245.75 363.37 0.00 26.14 305.00 4357.14
Waist 1347 92.38 14.31 61.10 82.15 100.47 160.40

The distributions of BMI and waist circumference were similar between the two cohorts, but differences in alcohol consumption, age,
SBP and DBP distributions were observed. Age in years.

Alc, alcohol consumption (g/month); BMI, body mass index in kg/m2; DBP, diastolic blood pressure (mmHg); F, female; M, male; Pctl,
percentile; SBP, systolic blood pressure (mmHg); Waist, waist circumference (cm).
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Performance criteria. In addition to missing variable
management, significant clinical heterogeneity between the
two cohorts was observed and suspected to introduce pre-
diction biases as illustrated by the age distribution of the two
cohorts (Table 1). These cohort differences may bias an
RMSE-type measure as the weight given to age in the mod-
eling based on FTC participants is likely to be underestimated
when using the YFS test cohort. For all these reasons, a rank-
based Spearman correlation q was preferred as a perfor-
mance measure. Besides the correlation coefficients, 95%
confidence intervals were calculated as implemented in the
DescTools R package (Signorell et al., 2021).

This performance measure was used both to estimate the
correlation between predicted and observed blood pressure
values in the YFS and FTC cohorts as well as to gauge the
correlation between variables and the phenotypic traits of
interest (SBP and DBP). Correlation nullity tests were also
undertaken using R base implemented functions.

Results

Parameter estimation and cross-validation

Under the optimal design matrix outlined in the Materials
and Methods section, the number of components was set to
k = 1 pursuant to the CV score values (k = 1: pooled CV
score = 166,198, standard deviation [SD] = 386; k = 2: pooled
CV score = 309,956, SD = 1082; k = 3: pooled CV score =
348,222, SD = 26,422). A final cross-validation procedure
was performed to tune the sparsity arguments related to the
Clinical_PRS and Metabolomics blocks because variable
selection was already performed on the transcriptomic and
methylation data (Supplementary Document, Section S1).

The CV score over 20 iterations by testing different spar-
sity value ranges (2 · 2 for the Clinical_PRS block and 4 · 4
for the Metabolomic block simultaneously) revealed that a
nonsparse model produces the lowest CV score. This result
can be explained by the fact that the weights of the Clin-
ical_PRS and Metabolomic blocks were found to be consis-
tent in both the integrative and predictive phases of our study.
The definition of the CV score (Li et al., 2012) thus likely
offered a significant weight to the variables of these two
blocks in the creation of the CV score, strongly penalizing the
removal of one of them.

When tuning sparsity arguments in the methylation and
transcriptomic blocks, differences in CV score as a function
of sparsity restriction were heterogeneous. These differences
were weak for the methylation block: the CV score with all
466 methylation variables remained within 1 SD of the CV
score with 100 methylation variables. In the transcriptomic
block, the CV score was more sensitive to changes in spar-
sity: a nonexistent sparsity argument significantly minimized
the CV score. In addition to showing difficulties in associa-
tion with other blocks (Supplementary Document, Section
S3), the cross-validation procedure pointed to the low weight
of CpG sites in minimizing the CV score criterion.

Uneven predictive gains across omics blocks

To estimate the predictive contribution of each omics
block within the modeling (k = 1; no sparsity arguments),
systolic and diastolic data from the 1350 participants in
the YFS cohort were predicted from block permutations.

Spearman correlation coefficients were calculated, as de-
scribed in the Materials and Methods section, to estimate the
correlation between predicted and measured blood pressure
values (Table 2). The performance of six models was studied,
including the original four-block model (noted as C+Me+
T+Mb hereafter). A three-block model excluding the meth-
ylation block (C+T+Mb) was also studied, for which only the
Clinical_PRS/Metabolomics association of the design matrix
was preserved. In addition to these two permuted models,
four submodels corresponding to four single-block PLS
regressions, that is, simple PLS regressions, were used to
highlight the predictive power of each isolated block.

The omics blocks had heterogeneous predictive power
(Table 2). We reported a Spearman correlation close to 5%
for the methylation data, for both SBP and DBP, in a single-
omic setting. The 95% confidence intervals also contained
the value 0 by a small margin in both SBP and DBP; meth-
ylation data struggled to provide good predictions (Spearman
correlation nullity test, p-value >5% for DBP and SBP).
Integration of methylation data in the four-block modeling
was also deemed to be deleterious, insofar as the Spearman
coefficient q was 9.4% lower in the case of DBP (compared
with 7.7% in the case of SBP). Once the methylation block
was removed from the four-block model, the three-block
model obtained the best predictive performance, with a q
close to 50% for DBP.

Although the differences in predictive performance
between the three-block and single-omics models appear to
be slight, biological and technical limitations prevent par-
ticularly high correlation coefficients from being obtained
and strong statistical differences from being shown. Cohort
differences (age and blood pressure distributions in particu-
lar) and missing clinical predictors illustrate these limi-
tations. Integrating multiple blocks also averages each
block-related latent variable into a single latent variable, thus
explaining the difficulty of significantly improving predic-
tions although the modeling has been enriched. These block-

Table 2. Predictive Performance Expressed

as Spearman Correlation Coefficients

by Permuting Omics Blocks in the Model

Model
permutation

Blood
pressure q 95% CI

C SBP 0.377 [0.330 to 0.422]
Me SBP 0.051 [-0.002 to 0.104]
T SBP 0.176 [0.124 to 0.227]
Mb SBP 0.332 [0.284 to 0.379]
C+Me+T+Mb SBP 0.359 [0.312 to 0.404]
C+T+Mb SBP 0.436 [0.391 to 0.478]
C DBP 0.448 [0.405 to 0.490]
Me DBP 0.045 [-0.009 to 0.098]
T DBP 0.147 [0.094 to 0.198]
Mb DBP 0.392 [0.345 to 0.436]
C+Me+T+Mb DBP 0.393 [0.347 to 0.438]
C+T+Mb DBP 0.487 [0.446 to 0.527]

The three-block model achieved the best predictive performance
for both SBP and DBP, highlighting the failure to integrate meth-
ylation data for which the Spearman correlation between blood
pressure measurements and blood pressure predictions was not sig-
nificantly non-null at the 5% threshold in a single-block context.

CI, confidence interval of q; C, Clinical_PRS; Mb, metabolomics;
Me, methylation; PRS, polygenic risk scores; T, transcriptomics.
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related components also showed consistent predictive powers
compared with those obtained in single-omics predictive
phases (Table 2), while embedded in a multi-omics model.

Indeed, the distributions of each of these block-related
components of the first and last decile of DBP, that is, the
10% of participants with the lowest (compared with highest)
DBP in each of the two cohorts, show a slight replication
defect of the transcriptomic data (Fig. 2). Similar to the
weaker predictions reported for the transcriptomics block in
single-omic settings (q = 17.6% for SBP, q = 14.7% for DBP;
Table 2) compared with those measured for the metabo-
lomics and clinical data, we observed a greater weakness of
the transcriptomic block in distinguishing the first and last
DBP decile of the YFS cohort in a multi-omics framework.
Projections of the first and last DBP decile of the YFS
test cohort onto the Metabolomic and Clinical_PRS block-
related components have been more convincing in that their
distribution is markedly different along the component
(Fig. 2).

Global view of the modeling

To better understand the biological relevance of a multi-
omics approach in the study of blood pressure values, the
loading vectors of the three-block model (C+T+Mb) were
derived. These have the function, as in the case of a PCA, of
showing which variables contribute most to the creation of
the sMBPLS block-related components. The log p-values
obtained by testing the nullity of the Spearman correlation
between each transcriptomic variable and SBP or DBP cor-
rected for age, sex, and BMI in the YFS test cohort were
compared with the loading factors of these transcriptomic
variables in the modeling (Fig. 3). Genes contributing little to
the creation of the transcriptomic-related component, that is,
having a loading factor close to 0, struggled to be replicated
within the YFS cohort, whereas the key replicated genes
identified in the variable screening step (Supplementary
Document, Section S1) had a major role in the modeling.

The transcriptomic values of the replicated TPPP3 and
MYADM genes (Huan et al., 2015; Zeller et al., 2017) were
significantly correlated with the corrected values of SBP and
DBP in the YFS cohort, as these two genes remained sig-
nificantly associated even after Bonferroni correction. High
loading-factor genes TIPARP and SLC31A2, replicated in the
hypertension and blood pressure literature (Huan et al., 2015;
Zeller et al., 2017), remained significant after Bonferroni
correction for SBP, but not for DBP. Other genes with low
correlation null test p-values close to 10-5 like CD97, LMNA,
F12, and AFAP1 were also found to be well represented in the
hypertension literature (Kraja et al., 2017; Zeller et al., 2017).
Thus, the modeling gave significant weight in the creation of
the transcriptomic latent variable to genes replicated in both
the YFS cohort and the hypertension literature, bridging the
gap between the hypertension literature and our study dealing
with unitary increases in SBP and DBP.

BMI and waist and hip circumference had particularly
high loading factors (Table 3) reinforcing the clinical value
of performing such measurements for predictive purposes.
In addition to classical clinical variables such as lymphocyte
or leukocyte counts, metabolomic variables were found to be
related to BMI (e.g., branched chain amino acids [BCAAs]
such as leucine and isoleucine) (Felig et al., 1969; Pietiläinen

et al., 2008) and blood lipid levels. The association between
BCAAs and blood pressure was also driving the modeling,
extrapolating the known link between BCAAs and hyper-
tension (Mahbub et al., 2020) to the study of blood pressure
values. Although valine, 1 of the 3 BCAAs, played a minor
role in the modeling, it was found to be highly correlated with
the variables leucine and isoleucine for which a Pearson
correlation of >70% in both cases was measured in the 310
FTC participants included in the modeling.

Discussion

The integration of multiple datasets in multi-omics frame-
works has become, in recent years, one of the leading meth-
ods to both compile knowledge in a domain and discover
highly complex relationships between omics (Olivier et al.,
2019). We conducted this study to extend the use of such
integrative approaches in the study of blood pressure val-
ues. Metabolomic, clinical, and transcriptomic risk factors
highlighted in the blood pressure modeling were widely rep-
licated in the hypertension literature at the single omic level,
proving the robustness of our approach to recover results usu-
ally obtained in single-omics and discriminative approaches.

In particular, the CD97, MYADM, TIPARP, SLC31A2, and
TPPP3 genes strongly contributed in creating the transcrip-
tomic latent variable. Their significant contribution corrob-
orated the previous results in hypertension and blood pressure
settings (Huan et al., 2015; Huang et al., 2018; Zeller et al.,
2017) while also showing that the connection between blood
pressure and hypertension remains tight when studying the
transcriptome.

Metabolomic and clinical factors replicated in the hyper-
tension literature have been highlighted as playing a key role
in understanding blood pressure, such as BCAAs (Mahbub
et al., 2020) and obesity-related measures (Tanaka, 2020)
while spotlighting the link connecting BCAAs to obesity
measures in the study of blood pressure values. The multi-
omics approach thus allowed overlapping with replicated
results in the hypertension and blood pressure literature,
while providing new multi-omics insights and readout in
understanding the biological mechanisms underlying blood
pressure unit variations.

The findings of our study go beyond novel biological
contributions: they are part of a clinical and public health
context and perspective. An in-depth understanding of the
blood pressure-related mechanisms is of definite clinical and
public health importance. Numerous studies have focused on
blood pressure fluctuations in longitudinal frameworks,
showing associations between high blood pressure variability
over time and increased risks of cardiovascular or coronary
heart diseases (Parati et al., 2018; Stevens et al., 2016). In
addition, it is recently known that some diseases, such as
cardiovascular disease, are associated with linear or nonlin-
ear increases in blood pressure (Arvanitis et al., 2021; Wan
et al., 2021), demonstrating the value of the present multi-
omics integrative findings in considering blood pressure in its
continuous, nondiscriminatory form.

The predictive contribution of each omic block on the test
cohort showed a strong predictive potential, especially for
clinical and metabolomic data. The best predictions were
obtained with a three-block model discarding the methyla-
tion data, although a slight defect in replication of the
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FIG. 2. Projection of participants of both cohorts on each block-related component. Despite strong differences in the
distribution of diastolic (and systolic) blood pressure between the two cohorts (Table 1 and Supplementary Document,
Section S4), the three-block model distributed the first and last decile participants fairly distinctly over its block-related
components. The transcriptomic component, however, lost some of its strength in that the distributions of the first and last
decile on the YFS cohort are considerably closer. Blood measures and block-related components were scaled in each of the
two cohorts to obtain this figure. C, clinical_PRS; HB, last decile; LB, first decile; Mb, metabolomics; PRS, polygenic risk
scores; T, transcriptomics; YFS, Young Finns Study.
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FIG. 3. Transcriptomic loadings compared with p-values in Spearman’s correlation nullity test in corrected SBP and DBP
applied on YFS participants. Genes contributing the most to the creation of the transcriptomic component, that is, having
high loading factors in absolute value, tended to have low Spearman’s correlation nullity test p-values compared with SBP
and DBP controlled by age, sex, and BMI. The axis log.p.value.sys on plot (B) (resp. log.p.value.dia on plot (A) refers,
respectively, to the negative logarithm to base 10 of the p-value obtained in the Spearman correlation nullity test between
each transcriptomic variable and systolic (resp. diastolic) blood pressure controlled by age, sex, and BMI in the YFS test
cohort. The absolute.loading coloring refers to the absolute factor loading value of each gene in the modeling. The semi-full
line refers to the negative logarithm to base 10 of the 5% p-value threshold while the dashed line refers to the Bonferroni
threshold. BMI, body mass index.

Table 3. Ten Clinical and Metabolomic Variables with the Highest Absolute Loading Factors

Variable name Biological meaning Block Loading

Waist Waist circumference Clinical_PRS -0.420
BMI BMI (kg/m2) Clinical_PRS -0.389
HIP Hip circumference Clinical_PRS -0.306
FB LEUK Leucocytes Clinical_PRS -0.304
B MONOS Monocytes Clinical_PRS -0.271
B NEUT Neutrophils Clinical_PRS -0.250
B HB Hemoglobin Clinical_PRS -0.250
SEX Sex (M/F) Clinical_PRS 0.241
B LYMF Lymphocytes Clinical_PRS -0.229
B HKR Haematocrit Clinical_PRS -0.229
Gp Glycoprotein acetylation Metabolomics -0.197
Ile Isoleucine Metabolomics -0.194
Leu Leucine Metabolomics -0.188
LHDLFC Free cholesterol in large HDL Metabolomics 0.184
XLHDLP co of very large HDL particles Metabolomics 0.179
TGPG ro triglycerides/phosphoglycerides Metabolomics -0.169
PUFAFA ro polyunsaturated f.a/total f.a Metabolomics 0.168
LHDLPL Phospholipids/total lipids ro (LHDL) Metabolomics 0.161
IDLFC Free cholesterol/total lipids ro (IDL) Metabolomics 0.160
LHDLPL Phospholipids in LHDL Metabolomics -0.157

co, concentration; f.a, fatty acid; LHDL, large high-density lipoprotein; ro, ratio.
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transcriptomic block in the test cohort was observed. This
three-block model was able to order participants according to
their SBP and DBP in the test cohort, despite particularly
different SBP and DBP distributions between the training and
test cohorts (Supplementary Document, Section S6 and
Supplementary Fig. S3 and Table 1). The rejection of
methylation data in the modeling was motivated by its del-
eterious role in acquiring good predictions. The preselection
of CpG sites by elastic-net (Supplementary Document, Sec-
tion S1) could be one of the sources of this integration failure
as there was a lack of statistical power.

The study of blood pressure values in its quantitative form
could also play an important role in this failure as studying
unit increases in SBP and DBP is probably too ambitious in
light of the sample size. However, these may not be the
only reasons for this failure and beyond the purely technical
aspect, it is the predictive robustness of the methylation data
that seems to be problematic when using an external repli-
cation cohort. An additional study (Supplementary Docu-
ment, Section S7 and Supplementary Table S2) using a
different methylation preprocessing method (van Dongen
et al., 2021) and considering a selection of replicated CpG
sites (Richard et al., 2017) in the modeling showed that the
predictive power of the methylation block remained partic-
ularly low.

Thus, the choices made in our study do not seem to be the
major cause of this integration failure. Because the epigen-
ome is strongly sensitive to age and a large number of con-
founders such as smoking (Bollepalli et al., 2019; Martin and
Fry, 2018), the difficulty in obtaining satisfactory quality
predictions may mainly be explained by differences between
training and test cohorts as well as a lack of finesse in con-
trolling for blood variables. The use of methylation data for
predictive purposes is therefore challenging in the context of
blood pressure and would require further studies. The use of
multi-omics methods for nonpredictive exploratory purposes
could, however, be relevant and has already been demon-
strated in a wide variety of contexts (Kolenc et al., 2021).

The achievement of better predictions of blood pressure
values is also conditioned on other factors. The democratized
use of deep learning (DL) methods to predict complex phe-
notypes (Cao et al., 2018) could also be suitable for the study
of blood pressure values: the high volumes of blood pressure-
related data and the growing knowledge in the field could
allow the acquisition of excellent quality predictions. As the
black box effect is difficult to counter with DL methods, the
use of the sMBPLS method is all the more justified to derive
biological and clinical interpretations easily. However, the
sMBPLS method still needs to be used more extensively to
understand its full value, as has already been carried out with
discriminative versions of latent-based methods (Singh et al.,
2019).

Recent work tends to gain interpretability with DL meth-
ods by forming connections with traditional PLS methods,
such as in the context of metabolomic data (Mendez et al.,
2020): increased methodological developments should, in the
coming years, make it possible to reconcile interpretability
and predictive performance. Adding data to feed the mod-
eling could also easily improve these predictions, in addition
to uncovering important biological mechanisms. Proteomics
could fulfill both these tasks as some blood pressure-related
proteomic species are already identified (Arnett and Claas,

2018; Carty et al., 2013) and their predictive potential in a
discriminatory context has already been demonstrated
(Gajjala et al., 2017). Associations between proteomics and
other omics such as transcriptomic data are also common
(Kolenc et al., 2021), making their use in the study of blood
pressure-related phenotypes encouraging. Other omics could
also be suitable for multi-omics integration, but more explor-
atory studies need to be conducted for this purpose.

Complementary approaches can also significantly improve
the quality of modeling and predictions, such as multi-omics
imputation methods. Although multiple imputation has been
used judiciously to impute a reasonable proportion of missing
clinical and metabolomic values (Supplementary Document,
Section S1), the use of new emerging methods specifically
designed for multi-omics contexts may allow for easier
imputation with at least as good quality (Song et al., 2020).
The increasing use of multi-omics approaches therefore in-
duces the development of auxiliary methods making its use
easier, more efficient, and more relevant. The massive use
of multi-omics approaches in the understanding of complex
phenotypes can only be encouraged because, in addition to
its biological and predictive interest, it contributes to the
methodological expansion of the multi-omics field.

Data Availability

The YFS dataset comprises health-related participant data
and their use is therefore restricted under the regulations on
professional secrecy (Act on the Openness of Government
Activities, 612/1999) and on sensitive personal data (Perso-
nal Data Act, 523/1999, implementing the EU data protection
directive 95/46/EC). Owing to these legal restrictions, the
Ethics Committee of the Hospital District of Southwest
Finland has in 2016 stated that individual-level data cannot
be stored in public repositories or otherwise made publicly
available. Data sharing outside the group is carried out in
collaboration with the YFS group and requires a data-sharing
agreement with the understanding that collaborators will
protect the data and not share it with any other parties.

The list of all investigators that collaborate with the YFS
group is displayed at the website of the YFS (http://
youngfinnsstudy.utu.fi/). Investigators can submit an ex-
pression of interest to the chairperson of the data sharing and
publication committee, professor Mika Kähönen (Tampere
University) and for genomics information to professor Terho
Lehtimäki (Tampere University).

The Finnish Twin Cohort data used in the analysis is
deposited in the Biobank of the Finnish Institute for
Health and Welfare (https://thl.fi/en/web/thl-biobank/for-
researchers). It is available to researchers after written
application and following the relevant Finnish legislation.
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PCA ¼ principal component analysis
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PLS ¼ partial least square
PRS ¼ polygenic risk scores

RMSE ¼ root mean square error
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SBP ¼ systolic blood pressure
SD ¼ standard deviation

sMBPLS ¼ sparse multi-block partial least square

T ¼ Transcriptomics
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YFS ¼ Young Finns Study
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