167 research outputs found

    Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions

    Get PDF
    Polarized spectroscopic photodetection enables numerous applications in diverse areas such as sensing, industrial quality control, and visible light communications. Although organic photodetectors (OPDs) can offer a cost-effective alternative to silicon-based technology—particularly when flexibility and large-area arrays are desired—polarized OPDs are only beginning to receive due research interest. Instead of resorting to external polarization optics, this report presents polarized OPDs based on directionally oriented blends of poly(3-hexylthiophene) (P3HT) and benchmark polymer or nonfullerene acceptors fabricated using a versatile solution-based method. Furthermore, a novel postprocessing scheme based on backfilling and plasma etching is advanced to ameliorate high dark-currents that are otherwise inherent to fibrillar active layers. The resulting polarized P3HT:N2200 OPDs exhibit a broad enhancement across all principal figures of merit compared to reference isotropic devices, including peak responsivities of 70 mA W1^{-1} and up to a threefold increase in 3 dB bandwidth to 0.75 MHz under parallel-polarized illumination. Polarization ratios of up to 3.5 are obtained across a spectral range that is determined by the specific donor–acceptor combinations. Finally, as a proof-of-concept demonstration, polarized OPDs are used for photoelasticity analysis of rubber films under tensile deformation, highlighting their potential for existing and emerging applications in advanced optical sensing

    Hygrothermal aging effects on mechanical and fatigue behaviors of a short-natural-fiber-reinforced composite

    Get PDF
    A new natural fiber composite made of high density polyethylene (HDPE) and 40% wt of short birch fibers (SBF) was developed to replace polyamide (better known under its industrial name “Nylon”) in spur gear manufacturing. The effect of hygrothermal aging on quasi-static and fatigue bending behaviors of this new composite has been studied in this work. Once hygrothermal aging is completed, flexural quasi-static tests have been performed on aged specimens and results compared with those obtained from unaged specimens. It has been observed that hygrothermal aging has no significant effect on flexural mechanical properties of this composite. After characterization, bending fatigue tests have been conducted on aged specimens and results have been compared with those of unaged specimens. These fatigue tests show that hygrothermal aging decreases the high cycles fatigue strength (HCFS) of this composite. The cause of this fatigue durability decrease has been investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and a scanning electron microscope (SEM). These tests show that the chemical composition and thermal behavior of this composite are not affected by hygrothermal aging. On the contrary, these tests show that damage mechanisms of this composite (HDPE/40% wt of SBF) are directly affected by this type of aging

    Fatigue life and residual strength of a short-natural-fiber-reinforced plastic vs Nylon

    Get PDF
    A new natural fiber composite made of high density polyethylene (HDPE) and short birch fibers (SBF) was developed to replace high-performance thermoplastics (Polyamide) commonly used in gears manufacturing. 3-point flexural quasi-static tests were achieved on bending specimens to assess mechanical properties. Comparison between these results and those of polyamide (PA) and neat polyethylene has showed that the polyethylene reinforced with 40%wt of SBF presents tensile and flexural mechanical properties that are higher than those of the PA11 or the neat polyethylene. After static characterisation, fatigue tests were performed to determine ε-N curves and the evolution of residual strength. Then, the fatigue behavior of the studied composite has been compared with that of PA66 and of ultra-high molecular weight polyethylene (UHMWPE). It has been noticed that polyethylene reinforced with 40%wt of SBF presents a high cycle fatigue strength (HCFS) that is more important than that of PA66 and UHMWPE. Consequently, the studied composite represents a good alternative to replace Nylon in spur gears manufacturing

    Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions

    Get PDF
    Polarized spectroscopic photodetection enables numerous applications in diverse areas such as sensing, industrial quality control, and visible light communications. Although organic photodetectors (OPDs) can offer a cost-effective alternative to silicon-based technology—particularly when flexibility and large-area arrays are desired—polarized OPDs are only beginning to receive due research interest. Instead of resorting to external polarization optics, this report presents polarized OPDs based on directionally oriented blends of poly(3-hexylthiophene) (P3HT) and benchmark polymer or nonfullerene acceptors fabricated using a versatile solution-based method. Furthermore, a novel postprocessing scheme based on backfilling and plasma etching is advanced to ameliorate high dark-currents that are otherwise inherent to fibrillar active layers. The resulting polarized P3HT:N2200 OPDs exhibit a broad enhancement across all principal figures of merit compared to reference isotropic devices, including peak responsivities of 70 mA W1^{-1} and up to a threefold increase in 3 dB bandwidth to 0.75 MHz under parallel-polarized illumination. Polarization ratios of up to 3.5 are obtained across a spectral range that is determined by the specific donor–acceptor combinations. Finally, as a proof-of-concept demonstration, polarized OPDs are used for photoelasticity analysis of rubber films under tensile deformation, highlighting their potential for existing and emerging applications in advanced optical sensing

    A neutral atom frequency reference in the deep UV with 10^(-15) range uncertainty

    Full text link
    We present an assessment of the (6s^{2})1S0 -> (6s7s)3P0 clock transition frequency in 199Hg with an uncertainty reduction of nearly three orders of magnitude and demonstrate an atomic quality factor, Q, of ~10^(14). The 199Hg atoms are confined in a vertical lattice trap with light at the newly determined magic wavelength of 362.5697 +/-0.0011 nm and at a lattice depth of 20Er. The atoms are loaded from a single stage magneto-optical trap with cooling light at 253.7 nm. The high Q factor is obtained with an 80 ms Rabi pulse at 265.6 nm. The frequency of the clock transition is found to be 1 128 575 290 808 162.0 +/-6.4 (sys.) +/-0.3 (stat.) Hz (fractional uncertainty = 5.7x10^(-15)). Neither an atom number nor second order Zeeman dependence have yet to be detected. Only three laser wavelengths are used for the cooling, lattice trapping, probing and detection.Comment: 5 pages, 6 figure

    Alkali poisoning of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3

    Full text link
    [EN] Fe (2 wt%)-Cu (1.5 wt%)-ZSM-5 SCR catalyst contacted 1.5 wt% of Na and 1.8 wt% of K in order to simulate poisoning by species more specifically contained in exhaust gases from exhaust gases of diesel engines and power plants. Poisoning agents do not cause loss of surface area nor pore occlusion. XRD and SEM results showed that alkali metals introduction did not deteriorate the crystallinity and morphology of zeolite crystals. However, a significant loss of surface acidity was observed upon alkali-poisoned catalysts causing a dramatic deactivation of the NH3-SCR of NO reaction. Na-doped catalyst showed higher low-temperature SCR activity, while potassium has a stronger deactivation effect on Fe-Cu-ZSM-5 than sodium beyond 400 degrees C.Jouini, H.; Mejri, I.; Martinez-Ortigosa, J.; Cerrillo, JL.; Petitto, C.; Mhamdi, M.; Blasco Lanzuela, T.... (2022). Alkali poisoning of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3. Research on Chemical Intermediates. 48(8):3415-3428. https://doi.org/10.1007/s11164-022-04768-93415342848

    Absorption line shape recovery beyond the detection bandwidth limit: application to the precision spectroscopic measurement of the Boltzmann constant

    No full text
    22 pagesInternational audienceA theoretical model of the influence of detection bandwidth properties on observed line shapes in laser absorption spectroscopy is described. The model predicts artificial frequency shifts, extra broadenings and line asymmetries which must be taken into account in order to obtain accurate central frequencies and other spectroscopic parameters. This reveals sources of systematic effects most probably underestimated so far potentially affecting spectroscopic measurements. This may impact many fields of research, from atmospheric and interstellar physics to precision spectroscopic measurements devoted to metrological applications, tests of quantum electrodynamics or other fundamental laws of nature. Our theoretical model is validated by linear absorption experiments performed on H2O and NH3 molecular lines recorded by precision laser spectroscopy in two distinct spectral regions, near- and mid-infrared. Possible means of recovering original line shape parameters or experimental conditions under which the detection bandwidth has a negligible impact, given a targeted accuracy, are proposed. Particular emphasis is put on the detection bandwidth adjustments required to use such high-quality molecular spectra for a spectroscopic determination of the Boltzmann constant at the 1 ppm level of accuracy

    Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    Get PDF
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species

    Practical actions to strengthen capacity for deep-water research in Africa

    Get PDF
    While Africa's deep marine biodiversity offers economic prospects it also supports crucial ecosystem services and sustainable development is dependent on knowledge of these systems. Building understanding of deep-water ecosystems is key, but there are substantial discrepancies in countries' abilities to achieve this. Coinciding with the 2024 Ocean Decade Conference, the Challenger 150 African Network of Deep-water Researchers is pleased to release a report on “Practical Actions to Strengthen Capacity for Deep-water Research in Africa”. Through a series of online workshops, the ANDR brought together 98 individuals from 19 African nations to discuss challenges for deep-water research in Africa, identify solutions to overcome these and propose practical actions going forward

    Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro

    Get PDF
    Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm E. multilocularis, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC in vitro and show that E/S-products of larvae of the chronic stage lead to an in vitro expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of E. multilocularis larvae within the host
    corecore