175 research outputs found
The ultraluminous GRB 110918A
GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19
years of continuous observations and the most luminous GRB ever observed since
the beginning of the cosmological era in 1997. We report on the final IPN
localization of this event and its detailed multiwavelength study with a number
of space-based instruments. The prompt emission is characterized by a typical
duration, a moderare of the time-integrated spectrum, and strong
hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a
huge isotropic-equivalent energy release
erg. The record-breaking energy flux observed at the peak of the short, bright,
hard initial pulse results in an unprecedented isotropic-equivalent luminosity
erg s. A tail of the soft gamma-ray
emission was detected with temporal and spectral behavior typical of that
predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT
observed the bright afterglow from 1.2 to 48 days after the burst and revealed
no evidence of a jet break. The post-break scenario for the afterglow is
preferred from our analysis, with a hard underlying electron spectrum and
ISM-like circumburst environment implied. We conclude that, among multiple
reasons investigated, the tight collimation of the jet must have been a key
ingredient to produce this unusually bright burst. The inferred jet opening
angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected
radiated energy and the peak luminosity, which, however, are still at the top
of their distributions for such tightly collimated events. We estimate a
detection horizon for a similar ultraluminous GRB of for Konus-WIND,
and for Swift/BAT, which stresses the importance of GRBs as probes of
the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap
Integrating the Fermi Gamma-Ray Burst Monitor into the 3rd Interplanetary Network
We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the
Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM,
the IPN will comprise 9 experiments. This will 1) assist the Fermi team in
understanding and reducing their systematic localization uncertainties, 2)
reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1
to 4 orders of magnitude, 3) facilitate the identification of GRB sources with
objects found by ground- and space-based observatories at other wavelengths,
from the radio to very high energy gamma-rays, 4) reduce the uncertainties in
associating some LAT detections of high energy photons with GBM bursts, and 5)
facilitate searches for non-electromagnetic GRB counterparts, particularly
neutrinos and gravitational radiation. We present examples and demonstrate the
synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator
project.Comment: 5 pages, 11 figures. 2009 Fermi Symposium. eConf Proceedings C09112
The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts
We present Interplanetary Network (IPN) data for the gamma-ray bursts in the
first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that
catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least
one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of
149 could be improved by arrival time analysis (or triangulation). For any
given burst observed by the GBM and one other distant spacecraft, triangulation
gives an annulus of possible arrival directions whose half-width varies between
about 0.4' and 32 degrees, depending on the intensity, time history, and
arrival direction of the burst, as well as the distance between the spacecraft.
We find that the IPN localizations intersect the 1 sigma GBM error circles in
only 52% of the cases, if no systematic uncertainty is assumed for the latter.
If a 6 degree systematic uncertainty is assumed and added in quadrature, the
two localization samples agree about 87% of the time, as would be expected. If
we then multiply the resulting error radii by a factor of 3, the two samples
agree in slightly over 98% of the cases, providing a good estimate of the GBM 3
sigma error radius. The IPN 3 sigma error boxes have areas between about 1
square arcminute and 110 square degrees, and are, on the average, a factor of
180 smaller than the corresponding GBM localizations. We identify two bursts in
the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM
triggered on a terrestrial gamma flash, and in the other, its origin was given
as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the
Astrophysical Journal Supplement Series following refereeing. Figures of the
localizations in Table 3 may be found on the IPN website, at
ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and
day of the burst, sometimes with suffixes A or
IPN localizations of Konus short gamma-ray bursts
Between the launch of the \textit{GGS Wind} spacecraft in 1994 November and
the end of 2010, the Konus-\textit{Wind} experiment detected 296 short-duration
gamma-ray bursts (including 23 bursts which can be classified as short bursts
with extended emission). During this period, the IPN consisted of up to eleven
spacecraft, and using triangulation, the localizations of 271 bursts were
obtained. We present the most comprehensive IPN localization data on these
events. The short burst detection rate, 18 per year, exceeds that of many
individual experiments.Comment: Published versio
Rheological Characteristics of Municipal Thickened Excess Activated Sludge (TEAS): Impacts of pH, Temperature, Solid Concentration and Polymer Dose
Rheological characterization of sludge is known to be an essential tool to optimize flow, mixing and other process parameters in wastewater treatment plants. This study deals with the characterization of thickened excess activated sludge in comparison to raw primary sludge and excess activated sludge. The effects of key parameters (total solid concentration, temperature, and pH) on the rheology and flow behavior of thickened excess activated sludge were studied. The rheological investigations were carried out for total solid concentration range of 0.9–3.7 %w/w, temperature range of 23–55 °C, and pH range of 3.6–10.0. Different rheological model equations were fitted to the experimental data. The model equations with better fitting were used to calculate the yield stress, apparent, zero-rate, infinite-rate viscosities, flow consistency index, and flow index. The decrease in concentration from 3.7 to 3.1 %w/w resulted in a drastic reduction of yield stress from 27.6 to 11.0 Pa, while a further reduction of yield stress to 1.3 Pa was observed as solid concentration was reduced to 1.3 %w/w. The viscosity at higher shear rate (>600 s−1) decreased from 0.05 Pa·s down to 0.008 Pa·s when the total solid concentration was reduced from 3.7 to 0.9 %. Yield stress decreased from 20.1 Pa down to 8.3 Pa for the Bingham plastic model when the temperature was raised from 25 to 55 °C. Activation energy and viscosity also showed decreasing trends with increasing temperature. Yield stress of thickened excess activated sludge increased from a value of 6.0 Pa to 8.3 Pa when the pH was increased from 3.6 to 10.0. The effect of polymer dose on the rheological behavior of the thickening of excess activated sludge was also investigated, and the optimum polymer dosage for enhanced thickener performance was determined to be 1.3 kg/ton DS
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Alternatively Activated Mononuclear Phagocytes from the Skin Site of Infection and the Impact of IL-4Rα Signalling on CD4+T Cell Survival in Draining Lymph Nodes after Repeated Exposure to Schistosoma mansoni Cercariae
In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death
- …