731 research outputs found
The runaway black hole GRO J1655-40
We have used the Hubble Space Telescope to measure the motion in the sky and
compute the galactocentric orbit of the black hole X-ray binary GRO J1655-40.
The system moves with a runaway space velocity of km s in a
highly eccentric () orbit. The black hole was formed in the
disk at a distance greater than 3 kpc from the Galactic centre and must have
been shot to such an eccentric orbit by the explosion of the progenitor star.
The runaway linear momentum and kinetic energy of this black hole binary are
comparable to those of solitary neutron stars and millisecond pulsars. GRO
J1655-40 is the first black hole for which there is evidence for a runaway
motion imparted by a natal kick in a supernova explosion.Comment: Published in Astronomy and Astrophysics. 5 pages, 2 color figures.
Color figure and animation can be found at
http://www.iafe.uba.ar/astronomia/mirabel/mirabel.html or
ftp://ftp.cea.fr/incoming/y2k01/mirabe
Migraine and cluster headache show impaired neurosteroids patterns
Background: Perturbation of neuronal excitability contributes to migraine. Neurosteroids modulate the activity of γ-aminobutyric acid A and N-methyl-d-aspartate receptors, and might be involved in the pathogenesis of migraine. Here, we measured plasma levels of four neurosteroids, i.e., allopregnanolone, epiallopregnanolone, dehydroepiandrosterone and deydroepiandrosterone sulfate, in patients affected by episodic migraine, chronic migraine, or cluster headache. Methods: Nineteen female patients affected by episodic migraine, 51 female patients affected by chronic migraine, and 18 male patients affected by cluster headache were recruited to the study. Sex- and age-matched healthy control subjects (31 females and 16 males) were also recruited. Patients were clinically characterized by using validated questionnaires. Plasma neurosteroid levels were measured by liquid chromatography-tandem mass spectrometry. Results: We found disease-specific changes in neurosteroid levels in our study groups. For example, allopregnanolone levels were significantly increased in episodic migraine and chronic migraine patients than in control subjects, whereas they were reduced in patients affected by cluster headache. Dehydroepiandrosterone and dehydroepiandrosterone sulfate levels were reduced in patients affected by chronic migraine, but did not change in patients affected by cluster headache. Conclusion: We have shown for the first time that large and disease-specific changes in circulating neurosteroid levels are associated with chronic headache disorders, raising the interesting possibility that fluctuations of neurosteroids at their site of action might shape the natural course of migraine and cluster headache. Whether the observed changes in neurosteroids are genetically determined or rather result from exposure to environmental or intrinsic stressors is unknown. This might also be matter for further investigation because stress is a known triggering factor for headache attacks in both migraineurs and cluster headache patients
First Measurement of the He3+He3-->He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak
We give the LUNA results on the cross section measurement of a key reaction
of the proton-proton chain strongly affecting the calculated neutrino
luminosity from the Sun: He3+He3-->He4+2p. Due to the cosmic ray suppression
provided by the Gran Sasso underground laboratory it has been possible to
measure the cross section down to the lower edge of the solar Gamow peak, i.e.
as low as 16.5 keV centre of mass energy. The data clearly show the cross
section increase due to the electron screening effect but they do not exhibit
any evidence for a narrow resonance suggested to explain the observed solar
neutrino flux.Comment: 5 pages, RevTeX, and 2 figures in PostScript Submitted for
publicatio
Physicochemical study of spiropyran-terthiophene derivatives: photochemistry and thermodynamics
The photochemistry and thermodynamics of two terthiophene (TTh) derivatives bearing benzospiropyran (BSP) moieties, 1-(3,3’’-dimethylindoline-6’-nitrobenzospiropyranyl)-2-ethyl 4,4’’-didecyloxy-2,2’:5’,2’’-terthiophene-3’-acetate (BSP-2) and 1-(3,3’’-dimethylindoline-6’-nitrobenzospiropyranyl)-2-10 ethyl 4,4’’-didecyloxy-2,2’:5’,2’’-terthiophene-3’-carboxylate (BSP-3), differing only by a single methylene spacer unit, have been studied. The kinetics of photogeneration of the equivalent merocyanine (MC) isomers (MC-2 and MC-3, respectively), the isomerisation properties of MC-2 and MC-3, and the thermodynamic parameters have been studied in cetonitrile, and compared to the parent, non-TThfunctionalised, benzospiropyran derivative, BSP-1. Despite the close structural similarity of BSP-2 and 15 BSP-3, their physicochemical properties were found to differ significantly; examples include activation energies (Ea(MC-2) = 75.05 KJ mol-1, Ea(MC-3) = 100.39 kJ mol-1) and entropies of activation (S‡ MC-2 = - 43.38 J K-1 mol-1, S‡ MC-3 = 37.78 J K-1 mol-1) for the thermal relaxation from MC to BSP, with the MC-3 value much closer to the unmodified MC-1 value (46.48 J K -1 mol-1) for this latter quantity. The thermal relaxation kinetics and solvatochromic behaviour of the derivatives in a range of solvents of 20 differing polarity (ethanol, dichloromethane, acetone, toluene and diethyl ether) are also presented. Differences in the estimated values of these thermodynamic and kinetic parameters are discussed with reference to the molecular structure of the derivatives
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
Electromagnetic characterization of soil-litter media – Application to the simulation of the microwave emissivity of the ground surface in forests
In order to improve our knowledge of the emitted signal of forests at L-band (1.4 GHz) we focused this study on permittivity measurements of heterogenic natural media such as soil or litter consisting of plant debris and organic matter. This study was done in the context of the upcoming SMOS (Soil Moisture and Ocean Salinity) satellite mission that will attempt to map surface soil moisture from L-band (1.4 GHz) passive microwave measurements. In the field of passive microwaves, very little information exists about the behaviour of the L-band signal of forests especially when litter is included in the soil-vegetation system. To date very few analyses have investigated the dielectric behaviour of the litter layer and its influence on the microwave emission of forests is generally neglected. © 2008 EDP Sciences
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
New measurement of exotic decay of Ac by C emission
The branching ratio of Ac decay by emission of C was remeasured under improved experimental conditions by using a radioactive source produced at the ISOLDE mass-separator at CERN and a nuclear track detector technique. The result, B=, is consistent with the anomalously high value obtained in the 1993 experiment thus confirming the importance of nuclear structure effects in this exotic decay
22Ne and 23Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22Ne(p,gamma)23Na
We investigate the impact of the new LUNA rate for the nuclear reaction NeNa on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range , and metallicities , , and . We find that the new LUNA measures have much reduced the nuclear uncertainties of the Ne and Na AGB ejecta, which drop from factors of to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of Na, the uncertainties that still affect the Ne and Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available
The Second-Generation Guide Star Catalog: Description and Properties
The GSC-II is an all-sky database of objects derived from the uncompressed
DSS that the STScI has created from the Palomar and UK Schmidt survey plates
and made available to the community. Like its predecessor (GSC-I), the GSC-II
was primarily created to provide guide star information and observation
planning support for HST. This version, however, is already employed at some of
the ground-based new-technology telescopes such as GEMINI, VLT, and TNG, and
will also be used to provide support for the JWST and Gaia space missions as
well as LAMOST, one of the major ongoing scientific projects in China. Two
catalogs have already been extracted from the GSC-II database and released to
the astronomical community. A magnitude-limited (R=18.0) version, GSC2.2, was
distributed soon after its production in 2001, while the GSC2.3 release has
been available for general access since 2007.
The GSC2.3 catalog described in this paper contains astrometry, photometry,
and classification for 945,592,683 objects down to the magnitude limit of the
plates. Positions are tied to the ICRS; for stellar sources, the all-sky
average absolute error per coordinate ranges from 0.2" to 0.28" depending on
magnitude. When dealing with extended objects, astrometric errors are 20% worse
in the case of galaxies and approximately a factor of 2 worse for blended
images. Stellar photometry is determined to 0.13-0.22 mag as a function of
magnitude and photographic passbands (B,R,I). Outside of the galactic plane,
stellar classification is reliable to at least 90% confidence for magnitudes
brighter than R=19.5, and the catalog is complete to R=20.Comment: 52 pages, 33 figures, to be published in AJ August 200
- …
