190 research outputs found
Rheo-acoustic gels: Tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations
Colloidal gels, where nanoscale particles aggregate into an elastic yet
fragile network, are at the heart of materials that combine specific optical,
electrical and mechanical properties. Tailoring the viscoelastic features of
colloidal gels in real-time thanks to an external stimulus currently appears as
a major challenge in the design of "smart" soft materials. Here we introduce
"rheo-acoustic" gels, a class of materials that are sensitive to ultrasonic
vibrations. By using a combination of rheological and structural
characterization, we evidence and quantify a strong softening in three widely
different colloidal gels submitted to ultrasonic vibrations (with submicron
amplitude and frequency 20-500 kHz). This softening is attributed to
micron-sized cracks within the gel network that may or may not fully heal once
vibrations are turned off depending on the acoustic intensity. Ultrasonic
vibrations are further shown to dramatically decrease the gel yield stress and
accelerate shear-induced fluidization. Ultrasound-assisted fluidization
dynamics appear to be governed by an effective temperature that depends on the
acoustic intensity. Our work opens the way to a full control of elastic and
flow properties by ultrasonic vibrations as well as to future theoretical and
numerical modeling of such rheo-acoustic gels.Comment: 21 pages, 14 figure
A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies
Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were
analyzed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE.
These broad-band data were fitted with a model assuming a thermal
Comptonization as a primary continuum component. We tested several model
options through a fitting of the Comptonized continuum accompanied by a complex
absorption and a Compton reflection. Both the large data set used and the model
space explored allowed us to accurately determine a mean temperature kTe of the
electron plasma, the Compton parameter y and the Compton reflection strength R
for the majority of objects in the sample. Our main finding is that a vast
majority of the sample (20 objects) is characterized by kTe < 100 keV, and only
for two objects we found kTe > 200 keV. The median kTe for entire sample is
48(-14,+57) keV. The distribution of the y parameter is bimodal, with a broad
component centered at ~0.8 and a narrow peak at ~1.1. A complex, dual absorber
model improved the fit for all data sets, compared to a simple absorption
model, reducing the fitted strength of Compton reflection by a factor of about
2. Modest reflection (median R ~0.32) together with a high ratio of Comptonized
to seed photon fluxes point towards a geometry with a compact hard X-ray
emitting region well separated from the accretion disc. Our results imply that
the template Seyferts spectra used in AGN population synthesis models should be
revised.Comment: 26 pages, 12 figures, accepted for publication in MNRA
IGRJ17361-4441: a possible new accreting X-ray binary in NGC6388
IGRJ17361-4441 is a newly discovered INTEGRAL hard X-ray transient, located
in the globular cluster NGC6388. We report here the results of the X-ray and
radio observations performed with Swift, INTEGRAL, RXTE, and the Australia
Telescope Compact Array (ATCA) after the discovery of the source on 2011 August
11. In the X-ray domain, IGRJ17361-4441 showed virtually constant flux and
spectral parameters up to 18 days from the onset of the outburst. The
broad-band (0.5-100 keV) spectrum of the source could be reasonably well
described by using an absorbed power-law component with a high energy cut-off
(N_H\simeq0.8x10^(22) cm^(-2), {\Gamma}\simeq0.7-1.0, and E_cut\simeq25 keV)
and displayed some evidence of a soft component below \sim2 keV. No coherent
timing features were found in the RXTE data. The ATCA observation did not
detect significant radio emission from IGRJ17361-4441, and provided the most
stringent upper limit (rms 14.1 {\mu}Jy at 5.5 GHz) to date on the presence of
any radio source close to the NGC6388 center of gravity. The improved position
of IGRJ17361-4441 in outburst determined from a recent target of opportunity
observation with Chandra, together with the X-ray flux and radio upper limits
measured in the direction of the source, argue against its association with the
putative intermediate-mass black hole residing in the globular cluster and with
the general hypothesis that the INTEGRAL source is a black hole candidate.
IGRJ17361-4441 might be more likely a new X-ray binary hosting an accreting
neutron star. The ATCA radio non-detection also permits us to derive an upper
limit to the mass of the suspected intermediate massive black hole in NGC6388
of <600 M\odot. This is a factor of 2.5 lower than the limit reported
previously.Comment: Accepted for publication on A&A lette
The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 hr orbit
We report on the detection of a 400.99018734(1) Hz coherent signal in the
Rossi X-ray Timing Explorer light curves of the recently discovered X-ray
transient, IGR J17498-2921. By analysing the frequency modulation caused by the
orbital motion observed between August 13 and September 8, 2011, we derive an
orbital solution for the binary system with a period of 3.8432275(3) hr. The
measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a
lower limit of 0.17 Msun on the mass of the companion star, while an upper
limit of 0.48 Msun is set by imposing that the companion star does not overfill
its Roche lobe. We observe a marginally significant evolution of the signal
frequency at an average rate of -(6.3 +/- 1.9)E-14 Hz/s. The low statistical
significance of this measurement and the possible presence of timing noise
hampers a firm detection of any evolution of the neutron star spin. We also
present an analysis of the spectral properties of IGR J17498-2921 based on the
observations performed by the Swift-X-ray Telescope and the RXTE-Proportional
Counter Array between August 12 and September 22, 2011. During most of the
outburst, the spectra are modeled by a power-law with an index Gamma~1.7-2,
while values of ~3 are observed as the source fades into quiescence.Comment: 5 pages, 2 figures, accepted for publication by A&A Letters on
7/11/201
Bacterial antimicrobial metal ion resistance
Metals such as mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years with until recently, little understanding of their mode of action. The discovery of antibiotics and new organic antimicrobial compounds during the twentieth century saw a general decline in the clinical use of antimicrobial metal compounds, with the exception of the rediscovery of the use of silver for burns treatments and niche uses for other metal compounds. Antibiotics and new antimicrobials were regarded as being safer for the patient and more effective than the metal-based compounds they supplanted. Bacterial metal ion resistances were first discovered in the second half of the twentieth century. The detailed mechanisms of resistance have now been characterized in a wide range of bacteria. As the use of antimicrobial metals is limited, it is legitimate to ask: are antimicrobial metal resistances in pathogenic and commensal bacteria important now? This review details the new, rediscovered and 'never went away' uses of antimicrobial metals; examines the prevalence and linkage of antimicrobial metal resistance genes to other antimicrobial resistance genes; and examines the evidence for horizontal transfer of these genes between bacteria. Finally, we discuss the possible implications of the widespread dissemination of these resistances on re-emergent uses of antimicrobial metals and how this could impact upon the antibiotic resistance problem
Relationships Linking Amplification Level to Gene Over-Expression in Gliomas
Background: Gene amplification is thought to promote over-expression of genes favouring tumour development. Because amplified regions are usually megabase-long, amplification often concerns numerous syntenic or non-syntenic genes, among which only a subset is over-expressed. The rationale for these differences remains poorly understood. Methodology/Principal Finding: To address this question, we used quantitative RT-PCR to determine the expression level of a series of co-amplified genes in five xenografted and one fresh human gliomas. These gliomas were chosen because we have previously characterised in detail the genetic content of their amplicons. In all the cases, the amplified sequences lie on extra-chromosomal DNA molecules, as commonly observed in gliomas. We show here that genes transcribed in nonamplified gliomas are over-expressed when amplified, roughly in proportion to their copy number, while non-expressed genes remain inactive. When specific antibodies were available, we also compared protein expression in amplified and nonamplified tumours. We found that protein accumulation barely correlates with the level of mRNA expression in some of these tumours. Conclusions/Significance: Here we show that the tissue-specific pattern of gene expression is maintained upon amplification in gliomas. Our study relies on a single type of tumour and a limited number of cases. However, it strongly suggests that, even when amplified, genes that are normally silent in a given cell type play no role in tumour progression
Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study
There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis
Correlates of self-reported coercive parenting of preschool-aged children at high risk for the development of conduct problems.
Objective: This study examines the correlates of coercive parenting in a high-risk sample of 305 three-year-old children likely to develop later conduct problems. As parental coercion has been identified as a significant risk factor for future psychopathology, the study sought to identify modifiable inter and intra-personal factors most closely associated with coercion. Method: Key variables known to place young children at future risk, such as maternal mood states, current child behaviour problems, demographic characteristics such as low income, past mental health problems and parents’ sense of competence, were analyzed based on parent-report measures and clinical interviews. Correlational and heirachical regression analysis identified key predictors of coercion. Results: Three variables emerged as the strongest predictors of maternal coercion: selfefficacy, child behaviour and maternal depression. Demographic factors contributed little to the model. Conclusions: Enhancing parental self-efficacy, especially specific parenting tasks with disruptive young children has the potential to make a significant contribution toward prevention of future conduct problems
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
- …