61 research outputs found

    Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev chain

    Full text link
    Determining Hamiltonian parameters from noisy experimental measurements is a key task for the control of experimental quantum systems. An experimental platform that recently emerged, and where knowledge of Hamiltonian parameters is crucial to fine-tune the system, is that of quantum dot-based Kitaev chains. In this work, we demonstrate an adversarial machine learning algorithm to determine the parameters of a quantum dot-based Kitaev chain. We train a convolutional conditional generative adversarial neural network (Conv-cGAN) with simulated differential conductance data and use the model to predict the parameters at which Majorana bound states are predicted to appear. In particular, the Conv-cGAN model facilitates a rapid, numerically efficient exploration of the phase diagram describing the transition between elastic co-tunneling and crossed Andreev reflection regimes. We verify the theoretical predictions of the model by applying it to experimentally measured conductance obtained from a minimal Kitaev chain consisting of two spin-polarized quantum dots coupled by a superconductor-semiconductor hybrid. Our model accurately predicts, with an average success probability of 9797\%, whether the measurement was taken in the elastic co-tunneling or crossed Andreev reflection-dominated regime. Our work constitutes a stepping stone towards fast, reliable parameter prediction for tuning quantum-dot systems into distinct Hamiltonian regimes. Ultimately, our results yield a strategy to support Kitaev chain tuning that is scalable to longer chains

    Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders

    Get PDF
    Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2′-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames

    Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations

    Get PDF
    While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA

    Cardiac rehabilitation availability and delivery in Europe: How does it differ by region and compare with other high-income countries?: Endorsed by the European Association of Preventive Cardiology

    Get PDF
    Aims: The aims of this study were to establish cardiac rehabilitation availability and density, as well as the nature ofprogrammes, and to compare these by European region (geoscheme) and with other high-income countries.Methods: A survey was administered to cardiac rehabilitation programmes globally. Cardiac associations were engagedto facilitate programme identification. Density was computed using global burden of disease study ischaemic heartdisease incidence estimates. Four high-income countries were selected for comparison (N¼790 programmes) toEuropean data, and multilevel analyses were performed.Results: Cardiac rehabilitation was available in 40/44 (90.9%) European countries. Data were collected in 37 (94.8%country response rate). A total of 455/1538 (29.6% response rate) programme respondents initiated the survey.Programme volumes (median 300) were greatest in western European countries, but overall were higher than inother high-income countries (

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Nature of Cardiac Rehabilitation Around the Globe

    Get PDF
    BackgroundCardiac rehabilitation (CR) is a clinically-effective but complex model of care. The purpose of this study was to characterize the nature of CR programs around the world, in relation to guideline recommendations, and compare this by World Health Organization (WHO) region.MethodsIn this cross-sectional study, a piloted survey was administered online to CR programs globally. Cardiac associations and local champions facilitated program identification. Quality (benchmark of ≥ 75% of programs in a given country meeting each of 20 indicators) was ranked. Results were compared by WHO region using generalized linear mixed models.Findings111/203 (54.7%) countries in the world offer CR; data were collected in 93 (83.8%; N = 1082 surveys, 32.1% program response rate). The most commonly-accepted indications were: myocardial infarction (n = 832, 97.4%), percutaneous coronary intervention (n = 820, 96.1%; 0.10), and coronary artery bypass surgery (n = 817, 95.8%). Most programs were led by physicians (n = 680; 69.1%). The most common CR providers (mean = 5.9 ± 2.8/program) were: nurses (n = 816, 88.1%; low in Africa, p
    corecore