366 research outputs found
Finite covers of random 3-manifolds
A 3-manifold is Haken if it contains a topologically essential surface. The
Virtual Haken Conjecture posits that every irreducible 3-manifold with infinite
fundamental group has a finite cover which is Haken. In this paper, we study
random 3-manifolds and their finite covers in an attempt to shed light on this
difficult question. In particular, we consider random Heegaard splittings by
gluing two handlebodies by the result of a random walk in the mapping class
group of a surface. For this model of random 3-manifold, we are able to compute
the probabilities that the resulting manifolds have finite covers of particular
kinds. Our results contrast with the analogous probabilities for groups coming
from random balanced presentations, giving quantitative theorems to the effect
that 3-manifold groups have many more finite quotients than random groups. The
next natural question is whether these covers have positive betti number. For
abelian covers of a fixed type over 3-manifolds of Heegaard genus 2, we show
that the probability of positive betti number is 0.
In fact, many of these questions boil down to questions about the mapping
class group. We are lead to consider the action of mapping class group of a
surface S on the set of quotients pi_1(S) -> Q. If Q is a simple group, we show
that if the genus of S is large, then this action is very mixing. In
particular, the action factors through the alternating group of each orbit.
This is analogous to Goldman's theorem that the action of the mapping class
group on the SU(2) character variety is ergodic.Comment: 60 pages; v2: minor changes. v3: minor changes; final versio
Weak Liouville-Arnold Theorems & Their Implications
This paper studies the existence of invariant smooth Lagrangian graphs for
Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli
Hamiltonians with n independent but not necessarily involutive constants of
motion and obtain two theorems reminiscent of the Liouville-Arnold theorem.
Moreover, we also obtain results on the structure of the configuration spaces
of such systems that are reminiscent of results on the configuration space of
completely integrable Tonelli Hamiltonians.Comment: 24 pages, 1 figure; v2 corrects typo in online abstract; v3 includes
new title (was: A Weak Liouville-Arnold Theorem), re-arrangement of
introduction, re-numbering of main theorems; v4 updates the authors' email
and physical addresses, clarifies notation in section 4. Final versio
On 3d extensions of AGT relation
An extension of the AGT relation from two to three dimensions begins from
connecting the theory on domain wall between some two S-dual SYM models with
the 3d Chern-Simons theory. The simplest kind of such a relation would
presumably connect traces of the modular kernels in 2d conformal theory with
knot invariants. Indeed, the both quantities are very similar, especially if
represented as integrals of the products of quantum dilogarithm functions.
However, there are also various differences, especially in the "conservation
laws" for integration variables, which hold for the monodromy traces, but not
for the knot invariants. We also discuss another possibility: interpretation of
knot invariants as solutions to the Baxter equations for the relativistic Toda
system. This implies another AGT like relation: between 3d Chern-Simons theory
and the Nekrasov-Shatashvili limit of the 5d SYM.Comment: 23 page
Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities
Background
The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.
Scope
We asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research.
Conclusions
We identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems
Functional Clustering Drives Encoding Improvement in a Developing Brain Network during Awake Visual Learning
Sensory experience drives dramatic structural and functional plasticity in developing neurons. However, for single-neuron plasticity to optimally improve whole-network encoding of sensory information, changes must be coordinated between neurons to ensure a full range of stimuli is efficiently represented. Using two-photon calcium imaging to monitor evoked activity in over 100 neurons simultaneously, we investigate network-level changes in the developing Xenopus laevis tectum during visual training with motion stimuli. Training causes stimulus-specific changes in neuronal responses and interactions, resulting in improved population encoding. This plasticity is spatially structured, increasing tuning curve similarity and interactions among nearby neurons, and decreasing interactions among distant neurons. Training does not improve encoding by single clusters of similarly responding neurons, but improves encoding across clusters, indicating coordinated plasticity across the network. NMDA receptor blockade prevents coordinated plasticity, reduces clustering, and abolishes whole-network encoding improvement. We conclude that NMDA receptors support experience-dependent network self-organization, allowing efficient population coding of a diverse range of stimuli.Canadian Institutes of Health Researc
Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data
Forest soils are generally considered to be net sinks of methane (CH4), but CH4 fluxes vary spatially depending on soil conditions. Measuring CH4 exchange with chambers, which are commonly used for this purpose, might not result in representative fluxes at site scale. Appropriate methods for upscaling CH4 fluxes from point measurements to site scale are therefore needed. At the boreal forest research site, Norunda, chamber measurements of soils and vegetation indicate that the site is a net sink of CH4, while tower gradient measurements indicate that the site is a net source of CH4. We investigated the discrepancy between chamber and tower gradient measurements by upscaling soil CH4 exchange to a 100 ha area based on an empirical model derived from chamber measurements of CH4 exchange and measurements of soil moisture, soil temperature and water table depth. A digital elevation model (DEM) derived from high-resolution airborne Light Detection and Ranging (LiDAR) data was used to generate gridded water table depth and soil moisture data of the study area as input data for the upscaling. Despite the simplistic approach, modeled fluxes were significantly correlated to four out of five chambers with R>0.68. The upscaling resulted in a net soil sink of CH4 of -10 mu mol m(-2) h(-1), averaged over the entire study area and time period June-September, 2010). Our findings suggest that additional contributions from CH4 soil sources outside the upscaling study area and possibly CH4 emissions from vegetation could explain the net emissions measured by tower gradient measurements. (C) 2015 Elsevier B.V. All rights reserved
Developmental differences in children’s interpersonal emotion regulation
Previous research on interpersonal emotion regulation (ER) in childhood has been rather unsystematic, focusing mainly on children’s prosocial behaviour, and has been conducted in the absence of an integrative emotion theoretical framework. The present research relied on the interpersonal affect classification proposed by Niven, Totterdell, and Holman (2009) to investigate children’s use of different interpersonal ER strategies. The study drew on two samples: 180 parents of children aged between 3 and 8 years reported about a situation where their child was able to change what another person was feeling in order to make them feel better. In addition, 126 children between 3- and 8-years old answered two questions about how they could improve others’ mood. Results from both samples showed age differences in children’s use of interpersonal ER strategies. As expected, ‘affective engagement’ (i.e., focusing on the person or the problem) and ‘cognitive engagement’ (i.e., appraising the situation from a different perspective) were mainly used by 7-8 years-old, whereas ‘attention’ (i.e., distracting and valuing) was most used by 3-4 and 5-6 years-old. ‘Humor’ (i.e., laughing with the target) remained stable across the different age groups. The present research provides more information about the developmental patterns for each specific interpersonal emotion regulation strategy
Methane exchange in a boreal forest estimated by gradient method
Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions
Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps
Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites
- …
