41 research outputs found
PG 1018−047 : the longest period subdwarf B binary
About 50 per cent of all known hot subdwarf B stars (sdBs) reside in close (short-period) binaries, for which common-envelope ejection is the most likely formation mechanism. However, Han et al. predict that the majority of sdBs should form through stable mass transfer leading to long-period binaries. Determining orbital periods for these systems is challenging and while the orbital periods of ∼100 short-period systems have been measured, there are no periods measured above 30 d. As part of a large programme to characterize the orbital periods of sdB binaries and their formation history, we have found that PG 1018−047 has an orbital period of 759.8 ± 5.8 d, easily making it the longest period ever detected for a sdB binary. Exploiting the Balmer lines of the subdwarf primary and the narrow absorption lines of the companion present in the spectra, we derive the radial velocity amplitudes of both stars, and estimate the mass ratio MMS/MsdB= 1.6 ± 0.2. From the combination of visual and infrared photometry, the spectral type of the companion star is determined to be mid-K
Evolutionary constraints on the long-period subdwarf B binary PG1018-047
We have revisited the sdB+K-star long-period binary PG 1018–047 based on 20 new high-resolution Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph spectra that provided regular coverage over a period of more than 26 m. We refine the period and establish that the orbit is significantly eccentric (P = 751.6 ± 1.9 d and e = 0.049 ± 0.008). A simultaneous fit derived from the narrow metal lines visible in the spectrum of the sdB star and the metal lines in the red part of the spectrum that originate from the companion provides the mass ratio, MMS/MsdB = 1.52 ± 0.04, for the system. From an NLTE model atmosphere analysis of the combined spectra, we find Teff = 29900 ± 330 K, log g = 5.65 ± 0.06 dex and log(nHe/nH) = –3.98 ± 0.16 dex for the primary, consistent with a B-type hot subdwarf star. The spectral contribution of the companion is consistent with a K5V-type star. With the companion having a mass of only ∼ 0.7 M⊙, this system lies close to the boundary below which stable Roche lobe overflow (RLOF) cannot be supported. To model the evolution of such a system, we have extended earlier MESA models towards lower companion masses. We find that both phase-dependent mass loss during RLOF, when 30 to 40 per cent of the available mass is lost through the outer Lagrange point and phase-dependent mass loss during RLOF in combination with a circumbinary disc of maximum MCB = 0.001 M⊙ could have formed the PG 1018–047 binary system
Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission
The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury’s environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors
The Comet Interceptor Mission
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
The Plasma Environment of Comet 67P/Churyumov-Gerasimenko
The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency’s Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet’s orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future
Magnetic reconnection driven by electron dynamics
Magnetic reconnections play essential roles in space, astrophysical, and laboratory plasmas, where the anti-parallel magnetic field components re-connect and the magnetic energy is converted to the plasma energy as Alfvénic out flows. Although the electron dynamics is considered to be essential, it is highly challenging to observe electron scale reconnections. Here we show the experimental results on an electron scale reconnection driven by the electron dynamics in laser-produced plasmas. We apply a weak-external magnetic field in the direction perpendicular to the plasma propagation, where the magnetic field is directly coupled with only the electrons but not for the ions. Since the kinetic pressure of plasma is much larger than the magnetic pressure, the magnetic field is distorted and locally anti-parallel. We observe plasma collimations, cusp and plasmoid like features with optical diagnostics. The plasmoid propagates at the electron Alfvén velocity, indicating a reconnection driven by the electron dynamics
Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors
How Do Romanian Universities Promote Their Educational Offer and What Mechanisms Are Used to Attract International Students?
Binaries discovered by the MUCHFUSS project : FBS0117+396: An sdB+dM binary with a pulsating primary
Contains fulltext :
119334.pdf (preprint version ) (Open Access
