521 research outputs found

    Synthesis of Furanylalkyl Hex- and Pentenopyranosid-4-uloses

    Get PDF
    A few novel furanylalkyl hex- and pentenopyranones have been synthesized from the corresponding  hexenopyranosides or hydroxymethylfurfural. In the hexose series, the reactions proceeded through monosilylation of the primary alcohol followed by oxidation of secondary alcohols. The pentenopyranones have been obtained by glycosidation of hydroxymethylfurfural oxidation product.KEYWORDS: Hydroxymethylfurfural (HMF), silylation, oxidation, pyranone

    Thyroid gland invasion in laryngopharyngeal squamous cell carcinoma: Prevalence, endoscopic and CT predictors

    Get PDF
    SummaryObjectivesThe authors studied the prevalence of histological thyroid gland invasion in laryngopharyngeal cancer and the preoperative endoscopic and CT signs predictive of this invasion.Patients and methodsRetrospective study of patients with laryngopharyngeal squamous cell carcinoma (T3 and T4) treated by total laryngectomy or total laryngopharyngectomy associated with concomitant total thyroidectomy or ipsilateral lobectomy and isthmectomy.ResultsEighty-seven patients were included. Eleven patients (12.6%) presented thyroid gland invasion. Subglottic tumour extension greater than or equal to 10mm (P=0.008) and cricoid cartilage destruction on CT (P=0.001) were statistically correlated with histological thyroid gland invasion. An intact appearance of the laryngeal cartilages on CT was associated with a low probability of thyroid gland invasion.ConclusionThyroid gland invasion must not be underestimated in patients with advanced laryngopharyngeal cancer. Preoperative CT is an essential part of the preoperative work-up. Thyroidectomy must not be performed systematically

    Valproate induces the unfolded protein response by increasing ceramide levels

    Get PDF
    Bipolar disorder (BD), which is characterized by depression and mania, affects 1–2% of the world population. Current treatments are effective in only 40–60% of cases and cause severe side effects. Valproate (VPA) is one of the most widely used drugs for the treatment of BD, but the therapeutic mechanism of action of this drug is not understood. This knowledge gap has hampered the development of effective treatments. To identify candidate pathways affected by VPA, we performed a genome- wide expression analysis in yeast cells grown in the presence or absence of the drug. VPA caused up-regulation of FEN1 and SUR4, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for ceramide synthesis. Interestingly, fen1Δ and sur4Δ mutants exhibited VPA sensitivity. In agreement with increased fatty acid elongase gene expression, VPA increased levels of phytoceramide, especially those containing C24–C26 fatty acids. Consistent with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects were rescued by supplementation of inositol and similarly observed in inositol-starved ino1Δ cells. Starvation of ino1Δ cells increased expression of FEN1 and SUR4, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the de novo synthesis of ceramide

    The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans

    Get PDF
    Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules

    Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night

    Get PDF
    Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only “twilight” periods defined by the sun’s elevation below the horizon at midday; we term this “midday twilight.” Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance

    Pan-Arctic diel vertical migration during the polar night

    Get PDF
    Diel vertical migration (DVM) has generally been assumed to cease during the polarnight in the high Arctic, although recent studies have shown the occurrence of lunar vertical migrations (LVMs) and shallow DVMs. Here, we quantified when and where full-depth (>20 m), solar-mediated DVM exists on a pan-Arctic scale. We observed the scattering population, most likely to be comprised of zooplankton, using 300 kHz acoustic Doppler current profilers (ADCPs). We quantified the presence/absence of DVM, and found that DVM continues throughout the year to at least 20 m at all locations south of 74° N. North of 77° N, DVM ceases for a period of time duringthe polar night. The dates of this cessation accurately align with the date of the winter solstice (±2 d). Between 74 and 77° N, DVM presence/absence is variable. Acoustic data sampled at 89° N, however, showed no evidence of DVM at any time during the year — a new observation. Using indicators of presence/absence of sea ice from ADCPs and satellite-derived sea ice concentration data, we revealed that local variations in sea ice cover directly determine the continuation or cessationof DVM during the polar night. Earlier-forming and higher-concentration sea ice causes a cessation in DVM, whereas low-concentration or late-forming sea ice results in continuous DVM when comparing migrations at similar latitudes

    Chapter 14 - Regional development and cooperation

    Get PDF
    This chapter provides an assessment of knowledge and practice on regional development and cooperation to achieve climate change mitigation. It will examine the regional trends and dimensions of the mitigation challenge. It will also analyze what role regional initiatives, both with a focus on climate change and in other domains such as trade, can play in addressing these mitigation challenges. The regional dimension of mitigation was not explicitly addressed in the IPCC Fourth Assessment Report (AR4). Its discussion of policies, instruments, and cooperative agreements (Working Group III AR4, Chapter 13) was focused primarily on the global and national level. However, mitigation challenges and opportunities differ significantly by region. This is particularly the case for the interaction between development / growth opportunities and mitigation policies, which are closely linked to resource endowments, the level of economic development, patterns of urbanization and industrialization, access to finance and technology, and - more broadly - the capacity to develop and implement various mitigation options. There are also modes of regional cooperation, ranging from regional initiatives focused specifically on climate change (such as the emissions trading scheme (ETS) of the European Union (EU)) to other forms of cooperation in the areas of trade, energy, or infrastructure, that could potentially provide a platform for delivering and implementing mitigation policies. These dimensions will be examined in this chapter. Specifically, this chapter will address the following questions: - Why is the regional level important for analyzing and achieving mitigation objectives? - What are the trends, challenges, and policy options for mitigation in different regions? - To what extent are there promising opportunities, existing examples, and barriers for leapfrogging in technologies and development strategies to low-carbon development paths for different regions? - What are the interlinkages between mitigation and adaptation at the regional level? - To what extent can regional initiatives and regional integration and cooperation promote an agenda of low-carbon climate-resilient development? What has been the record of such initiatives, and what are the barriers? Can they serve as a platform for further mitigation activities

    Model-informed classification of broadband acoustic backscatter from zooplankton in an in situ mesocosm

    Get PDF
    Funding: The fieldwork was registered in the Research in Svalbard database (RiS ID 11578). Fieldwork and research were financed by Arctic Field Grant Project AZKABAN-light (Norwegian Research Council project no. 322 332), Deep Impact (Norwegian Research Council project no. 300 333), Deeper Impact (Norwegian Research Council project no. 329 305), Marine Alliance for Science and Technology in Scotland (MASTS), the Ocean Frontier Institute (SCORE grant no. HR09011), and Glider Phase II financed by ConocoPhillips Skandinavia AS. Geir Pedersen’s participation was co-funded by CRIMAC (Norwegian Research Council project no. 309 512). Maxime Geoffroy was financially supported by the Ocean Frontier Institute of the Canada First Research Excellence Fund, the Natural Sciences and Engineering Research Council Discovery Grant Programme, the ArcticNet Network of Centres of Excellence Canada, the Research Council of Norway Grant Deep Impact, and the Fisheries and Oceans Canada through the Atlantic Fisheries Fund.Classification of zooplankton to species with broadband echosounder data could increase the taxonomic resolution of acoustic surveys and reduce the dependence on net and trawl samples for ‘ground truthing’. Supervised classification with broadband echosounder data is limited by the acquisition of validated data required to train machine learning algorithms (‘classifiers’). We tested the hypothesis that acoustic scattering models could be used to train classifiers for remote classification of zooplankton. Three classifiers were trained with data from scattering models of four Arctic zooplankton groups (copepods, euphausiids, chaetognaths, and hydrozoans). We evaluated classifier predictions against observations of a mixed zooplankton community in a submerged purpose-built mesocosm (12 m3) insonified with broadband transmissions (185–255 kHz). The mesocosm was deployed from a wharf in Ny-Ålesund, Svalbard, during the Arctic polar night in January 2022. We detected 7722 tracked single targets, which were used to evaluate the classifier predictions of measured zooplankton targets. The classifiers could differentiate copepods from the other groups reasonably well, but they could not differentiate euphausiids, chaetognaths, and hydrozoans reliably due to the similarities in their modelled target spectra. We recommend that model-informed classification of zooplankton from broadband acoustic signals be used with caution until a better understanding of in situ target spectra variability is gained.Publisher PDFPeer reviewe

    Comparison of three fat suppression sequences for the detection of vertebral detection. Turbo STIR, phase contrast gradient-echo, and MISTEC-Chopper after gadolinium injection

    Get PDF
    OBJECTIVES: Assess three fat suppression sequences used to search for spinal metastases: TurboSTIR, phase contrast gradient-echo, and MISTEC-Chopper after gadolinium injection. MATERIAL AND METHODS: A prospective study was conducted in 10 patients with primary neoplasia. MIR sequences acquired (1 Tesla) were TurboSTIR, T1 spin-echo with and without gadolinium injection, phase contrast gradient-echo and M-Chop after gadolinium injection. Signal intensity in normal bone marrow, metastatic tissue, and subcutaneous fat as well as background noise was measured. Signal-to-noise (S/N) ratio was determined. Lesion borders, artefacts, and extent of detected lesions were determined quantitatively. Bone marrow signal intensity was also recorded. RESULTS: S/N ratio was best with gradient-echo which identified well the borders of lesions within the hemopoietic marrow. For lesions located in high-fat marrow (as in post-radiation marrow), the high intensity signal of the lesion confounded with the fat signal. TurboSTIR gave effective fat signal suppression and was particularly useful for yellow marrow, less so for red marrow. This technique confounded cell proliferation with perilesional edema (enlarging lesion extention). In one case, this sequence did not detect a small lesion visible with the two other sequences. This sequence was sensitive to artefacts (especially vascular artefacts) which can produce false nodular images. M-Chop gave good suppression of vertebral fat tissue (better for yellow marrow) but subjective detection of lesions was more difficult. CONCLUSION: The phase contrast gradient-echo sequence after gadlinium injection appeared to be the best sequence excepting cases of post-trauma (radiotherapy or chemotherapy) fat transformation of the marrow where the TurboSTIR sequence could be preferred

    Postglacial expansion of the arctic keystone copepod calanus glacialis

    Get PDF
    Calanus glacialis, a major contributor to zooplankton biomass in the Arctic shelf seas, is a key link between primary production and higher trophic levels that may be sensitive to climate warming. The aim of this study was to explore genetic variation in contemporary populations of this species to infer possible changes during the Quaternary period, and to assess its population structure in both space and time. Calanus glacialis was sampled in the fjords of Spitsbergen (Hornsund and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The sequence of a mitochondrial marker, belonging to the ND5 gene, selected for the study was 1249 base pairs long and distinguished 75 unique haplotypes among 140 individuals that formed three main clades. There was no detectable pattern in the distribution of haplotypes by geographic distance or over time. Interestingly, a Bayesian skyline plot suggested that a 1000-fold increase in population size occurred approximately 10,000 years before present, suggesting a species expansion after the Last Glacial Maximum.GAME from the National Science Centre, the Polish Ministry of Science and Higher Education Iuventus Plus [IP2014 050573]; FCT-PT [CCMAR/Multi/04326/2013]; [2011/03/B/NZ8/02876
    corecore