164 research outputs found

    24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex

    Get PDF
    Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1–3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and Alzheimer's disease

    Alzheimer’s loci: epigenetic associations and interaction with genetic factors

    Get PDF
    Objective: We explore the role of DNA methylation in Alzheimer’s disease (AD). To elucidate where DNA methylation falls along the causal pathway linking risk factors to disease, we examine causal models to assess its role in the pathology of AD. Methods: DNA methylation profiles were generated in 740 brain samples using the Illumina HumanMet450K beadset. We focused our analysis on CpG sites from 11 AD susceptibility gene regions. The primary outcome was a quantitative measure of neuritic amyloid plaque (NP), a key early element of AD pathology. We tested four causal models: (1) independent associations, (2) CpG mediating the association of a variant, (3) reverse causality, and (4) genetic variant by CpG interaction. Results: Six genes regions (17 CpGs) showed evidence of CpG associations with NP, independent of genetic variation – BIN1 (5), CLU (5), MS4A6A (3), ABCA7 (2), CD2AP (1), and APOE (1). Together they explained 16.8% of the variability in NP. An interaction effect was seen in the CR1 region for two CpGs, cg10021878 (P = 0.01) and cg05922028 (P = 0.001), in relation to NP. In both cases, subjects with the risk allele rs6656401AT/AA display more methylation being associated with more NP burden, whereas subjects with the rs6656401TT protective genotype have an inverse association with more methylation being associated with less NP. Interpretation These observations suggest that, within known AD susceptibility loci, methylation is related to pathologic processes of AD and may play a largely independent role by influencing gene expression in AD susceptibility loci

    Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records

    Get PDF
    Objective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings. Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume). Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R[superscript 2] = 0.38±0.05, and that between EHR-derived and true BPF has a mean R[superscript 2] = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10[superscript −12]). Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.National Institute of General Medical Sciences (U.S.) (NIH U54-LM008748

    Intermediate Phenotypes Identify Divergent Pathways to Alzheimer's Disease

    Get PDF
    Background: Recent genetic studies have identified a growing number of loci with suggestive evidence of association with susceptibility to Alzheimer's disease (AD). However, little is known of the role of these candidate genes in influencing intermediate phenotypes associated with a diagnosis of AD, including cognitive decline or AD neuropathologic burden. Methods/Principal Findings: Thirty-two single nucleotide polymorphisms (SNPs) previously implicated in AD susceptibility were genotyped in 414 subjects with both annual clinical evaluation and completed brain autopsies from the Religious Orders Study and the Rush Memory and Aging Project. Regression analyses evaluated the relation of SNP genotypes to continuous measures of AD neuropathology and cognitive function proximate to death. A SNP in the zinc finger protein 224 gene (ZNF224, rs3746319) was associated with both global AD neuropathology (p = 0.009) and global cognition (p = 0.002); whereas, a SNP at the phosphoenolpyruvate carboxykinase locus (PCK1, rs8192708) was selectively associated with global cognition (p = 3.57×10−4). The association of ZNF224 with cognitive impairment was mediated by neurofibrillary tangles, whereas PCK1 largely influenced cognition independent of AD pathology, as well as Lewy bodies and infarcts. Conclusions/Significance: The findings support the association of several loci with AD, and suggest how intermediate phenotypes can enhance analysis of susceptibility loci in this complex genetic disorder

    CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology

    Get PDF
    In our functional dissection of the CD33 Alzheimer’s disease susceptibility locus, we find that the rs3865444C risk allele is associated with greater cell surface expression of CD33 in monocytes (t50 = 10.06, pjoint=1.3×10–13) of young and older individuals. It is also associated with (1) diminished internalization of Aβ42) (2) accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging and (3), increased numbers of activated human microglia

    Genetic architecture of age-related cognitive decline in African Americans

    Get PDF
    Objective: To identify genetic risk factors associated with susceptibility to age-related cognitive decline in African Americans (AAs). Methods: We performed a genome-wide association study (GWAS) and an admixture-mapping scan in 3,964 older AAs from 5 longitudinal cohorts; for each participant, we calculated a slope of an individual's global cognitive change from neuropsychological evaluations. We also performed a pathway-based analysis of the age-related cognitive decline GWAS. Results: We found no evidence to support the existence of a genomic region which has a strongly different contribution to age-related cognitive decline in African and European genomes. Known Alzheimer disease (AD) susceptibility variants in the ABCA7 and MS4A loci do influence this trait in AAs. Of interest, our pathway-based analyses returned statistically significant results highlighting a shared risk from lipid/metabolism and protein tyrosine signaling pathways between cognitive decline and AD, but the role of inflammatory pathways is polarized, being limited to AD susceptibility. Conclusions: The genetic architecture of aging-related cognitive in AA individuals is largely similar to that of individuals of European descent. In both populations, we note a surprising lack of enrichment for immune pathways in the genetic risk for cognitive decline, despite strong enrichment of these pathways among genetic risk factors for AD

    GWAS for executive function and processing speed suggests involvement of the CADM2 gene

    Get PDF
    To identify common variants contributing to normal variation in two specific domains of cognitive functioning, we conducted a genome-wide association study (GWAS) of executive functioning and information processing speed in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium. Neuropsychological testing was available for 5429-32 070 subjects of European ancestry aged 45 years or older, free of dementia and clinical stroke at the time of cognitive testing from 20 cohorts in the discovery phase. We analyzed performance on the Trail Making Test parts A and B, the Letter Digit Substitution Test (LDST), the Digit Symbol Substitution Task (DSST), semantic and phonemic fluency tests, and the Stroop Color and Word Test. Replication was sought in 1311-21860 subjects from 20 independent cohorts. A significant association was observed in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2) for performance on the LDST/DSST. Rs17518584 is located about 170 kb upstream of the transcription start site of the major transcript for the CADM2 gene, but is within an intron of a variant transcript that includes an alternative first exon. The variant is associated with expression of CADM2 in the cingulate cortex (P-value=4 × 10(-4)). The protein encoded by CADM2 is involved in glutamate signaling (P-value=7.22 × 10(-15)), gamma-aminobutyric acid (GABA) transport (P-value=1.36 × 10(-11)) and neuron cell-cell adhesion (P-value=1.48 × 10(-13)). Our findings suggest that genetic variation in the CADM2 gene is associated with individual differences in information processing speed.Molecular Psychiatry advance online publication, 14 April 2015; doi:10.1038/mp.2015.37
    • …
    corecore