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Abstract

Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour
transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The
role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that
dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such
rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues,
including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and
play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human
dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation
sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing
these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of
DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-
hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA
methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of
methylation preceding peak transcript expression by 1–3 hours. Weak ante-mortem rest-activity rhythms were associated
with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer’s disease. These findings
support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role
in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and
Alzheimer’s disease.
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Introduction

Circadian rhythms—intrinsic 24-hour biological rhythms—

have a major impact on the molecular biology, physiology, and

function of many human tissues, including the human brain,

where they have an important influence on neurological diseases

like dementia, epilepsy, and stroke.

In model organisms, circadian rhythms are generated in

neurons of the suprachiasmatic nucleus (SCN) by a transcrip-

tion-translation feedback cycle involving a set of evolutionarily

conserved ‘‘clock’’ genes [1]. Similar clocks are present in other

tissues [2], including neocortex. These tissue clocks are entrained

by the SCN and drive circadian rhythms of tissue physiology, in

part through 24-hour cycles of histone modification and gene

expression involving a sizeable subset of the transcriptome [3] that

varies from tissue to tissue [4].

Whether circadian rhythms of DNA methylation are important

for maintaining or modulating circadian rhythms of gene

expression in mammalian tissues is uncertain. Recent work in

Neurospora suggests that circadian rhythms of DNA methylation
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may play a role in the fungal molecular clock [5]. Moreover,

recent studies demonstrated the importance of non-circadian

plastic DNA methylation in mediating the long term effect of light

on changes in the period of the intrinsic circadian clock in mice

[6], and in mediating the effect of photoperiod on endocrine

function in hamsters [7]. However, 24-hour rhythms of promoter

region DNA methylation were not found in a study of mouse

suprachiasmatic nucleus [6] or in a recent study of mouse liver [8].

To our knowledge, 24-hour rhythms of DNA methylation and

their relationship to circadian rhythms of gene expression have not

been demonstrated in any mammalian tissue, including human

brain.

In fact, there are few studies concerning epigenetic mechanisms

influencing circadian rhythms of gene expression in human

neocortex. This is an important gap because circadian rhythms

exert an important effect on neurological diseases like dementia

and epilepsy, as well as on cognition and voluntary human

behavior, and the neocortex is central to all of these processes.

Understanding and potentially therapeutically manipulating the

circadian influence on human neurological diseases and behavior

will depend on elucidating their genetic and epigenetic basis in

human neocortical tissues. The dorsolateral prefrontal cortex in

particular plays a key role in several cognitive domains [9] that

show considerable circadian fluctuation, as well as in diseases like

schizophrenia [10]. Moreover, significant 24-hour rhythms of gene

expression have been demonstrated in human dorsolateral

prefrontal cortex [11]. Because the circadian regulation of gene

expression varies between tissues and species, there is no perfect

substitute for directly studying genetic and epigenetic mechanisms

underlying circadian rhythms in human neocortical tissue.

However, progress in examining circadian rhythms of epigenetic

modification in human neocortex has been limited by difficulties in

obtaining large sets of human neocortical specimens at a wide

range of circadian times suitable for epigenetic analysis.

The overall aim of this study was to test the hypothesis that 24-

hour rhythms of DNA methylation exist in human dorsolateral

prefrontal cortex, and play a role in 24-hour rhythms of RNA

expression. To do so, we determined DNA methylation levels in

post-mortem human dorsolateral prefrontal cortex samples from

738 community-dwelling organ donors at 420,132 autosomal

DNA methylation sites across the genome. We considered DNA

methylation levels as a function of time of death, parameterized

these data using cosine functions, and determined global statistical

significance by permutation. We then related 24-hour rhythms of

DNA methylation to local gene landmarks, to parallel rhythms of

RNA expression determined by RNA sequencing, and to ante-

mortem behavioral rhythms measured by actigraphy. We found

evidence for widespread 24-hour rhythms of DNA methylation

whose timing was closely related to the position of specific DNA

methylation sites relative to gene landmarks. Moreover, we found

that genomic regions proximate to transcription start site were

enriched in high amplitude rhythmic DNA methylation sites, and

that the timing of rhythmicity at these sites was time-locked to

rhythms of nearby gene expression, with the nadir of methylation

preceding peak transcript expression by 1–3 hours. We demon-

strated an association between the robustness of ante-mortem rest-

activity rhythms and the amplitude of rhythms of DNA

methylation. Finally, we identified effects of age, sex, and

Alzheimer’s disease on the amplitude and phase of rhythms of

DNA methylation.

Results

We analyzed postmortem human neocortical DNA methylation

data from 738 individuals participating in 2 longitudinal cohort

studies of aging – the Religious Orders Study (ROS) and the Rush

Memory and Aging Project (MAP). All ROS and MAP

participants are organ donors and hence time of death is well

documented. Characteristics of the study subjects are shown in

Table 1. DNA methylation levels at 420,132 DNA methylation

sites spanning all 22 autosomes was generated using the Illumina

Infinium HumanMethylation450 Bead Chip assay (Illumina, San

Diego, CA). Prior to further analyses, we accounted for the effects

of age, sex, presence/absence of dementia, source cohort, post-

mortem interval, and batch effects by regressing the methylation

data against these factors and taking the residuals, which were

then normalized to the mean and standard deviation of all 738

subjects. These normalized residuals represent the relative

methylation at each site adjusted for these covariates, and were

used for all further analyses, except where specifically indicated.

To identify temporal patterns in DNA methylation at each of

the sites, we considered DNA methylation as a function of clock

time of death, with each subject contributing a single data point to

a time series spanning 24 hours. Visual inspection of these data

revealed that some sites were clearly rhythmic (Figure 1 A–B)

while others were clearly not (Figure 1 C–D).

Author Summary

Circadian rhythms are intrinsic 24-hour biological rhythms
that influence many aspects of human biology, including
normal and abnormal human brain functions such as
cognition and seizures. Circadian rhythms are maintained
by a near 24-hour feedback loop mediated by a series of
‘‘clock’’ genes that are similar across species, including
humans. However, the specific mechanisms underlying the
circadian regulation of gene transcription are unknown.
DNA methylation is an epigenetic mechanism that can
influence gene expression without changes in DNA
sequence. The 24-hour rhythms of DNA methylation are
one mechanism contributing to 24-hour rhythms of clock
gene expression in fungi. However, this has not been
demonstrated in mammals including humans. In this
study, we examined levels of DNA methylation at.
400,000 sites across the genome in the brains of 738
human subjects and showed significant 24-hour rhythms
of DNA methylation. Moreover, we showed that for
specific locations of DNA methylation site, these rhythms
of methylation were linked to rhythms of gene expression.
This is important because it suggests that circadian
rhythms of DNA methylation may be an important
mechanism underlying circadian rhythms of gene expres-
sion in the human brain, and hence circadian rhythms of
normal and abnormal brain function.

Table 1. Clinical characteristics of the study subjects.

Characteristic Mean (SD) or Number (%)

Age at Death (years) 88.0 (6.7)

Female Sex 469 (64%)

Source Cohort MAP: 340 (46%) ROS: 398 (54%)

Actigraphic Interdaily Stability 0.48 (0.15)

Time of Death (hours) 12:08 (8:11)

Postmortem Interval (hours) 7.5 (5.8)

NIA-Reagan Intermediate/High 446 (60%)

doi:10.1371/journal.pgen.1004792.t001

24h Rhythms of Human Dorsolateral Prefrontal Cortex DNA Methylation
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Based on visual inspection of these data, and in keeping with

prior work examining 24-hour rhythms of gene expression in

neocortical tissue [11], we then modeled these data using cosine

curves. We parameterized these data using functions of the form

M = m+(b1)*cos(t2bA)..[Eq1] where m is the mesor (the mean

value considering all time points), b1 is the amplitude of oscillation,

bA is the timing of the peak, and t is the time of death. We

calculated the proportion of variance explained by the fit cosine

model at each DNA methylation site (Supporting File 1).

We first carried out a series of analyses to identify global

patterns of rhythmicity. To quantify the probability that the

observed data could have occurred by chance alone, we performed

a series of analyses comparing the observed data to 10,000

permuted null datasets generated by randomly shuffling the times

of death in our data while preserving the correlation between

DNA methylation sites. We fit cosine curves at each of the 420,132

sites in each null dataset, calculated the proportion of variance at

each site explained by the fit cosine curve, and determined the

time of the methylation nadir (bA-p). We then carried out four

analyses comparing the observed to the 10,000 permuted null

datasets: 1) We calculated the mean total proportion of variance

collectively explained by the fit cosine curves in each of the 10,000

permuted null datasets and in the observed data, and determined

the proportion of null datasets in which this was as large or larger

than in the observed data. In none of the 10,000 permuted null

datasets was the mean proportion of variance explained by cosine

Figure 1. Representative cycling and non-cycling DNA methylation sites. Hash marks indicate means and 95% confidence intervals of the
mean. Data are double plotted in 4 hour bins. Red line indicates best-fit cosine curve. (A,B) representative rhythmic DNA methylation sites. (C,D)
representative arrhythmic DNA methylation sites. Abbreviations: PVE proportion of variance explained.
doi:10.1371/journal.pgen.1004792.g001
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curves greater than in the observed data, indicating that the

average rhythmicity of the 420,132 sites is greater than expected

by chance alone, and the probability of the observed data being

due to chance alone is p,0.0001 (Figure 2A). 2) We repeated the

same for the median total proportion of variance explained. As

above, in none of the 10,000 permuted null datasets was the

median proportion of variance explained by cosine curves greater

than in the observed data, indicating p,0.0001 (Figure 2B). 3) We

used the Wilcoxon rank-sum test to compare the observed

distribution of proportions of variance explained by cosine curves

to an empiric null distribution generated by taking the mean of the

corresponding vectors from the 10,000 permuted null datasets.

The observed distribution was significantly greater than the

empiric null distribution (W = 91342066816 p,2.2610216 by the

Wilcoxon rank-sum test). 4) We compared the distribution of

methylation nadir times in the observed and permuted null

datasets (Figure 2C). As expected, in the permuted null datasets,

the methylation nadirs were uniformly distributed. By contrast, the

methylation nadirs showed significant non-random clustering in

the observed data (H2 = 10449.1; p,2.2610216 by the Rao test

for equality of dispersions). Considering these four analyses

together, we concluded that the probability of the 24-hour

rhythmicity seen in the observed data occurring by chance was

exceedingly small.

DNA methylation is thought to play a role in regulating gene

transcription. Therefore, we examined the relationship between

the physical position of DNA methylation sites relative to

transcription start sites and the observed parameters of rhythmicity

such as amplitude and phase (Figure 3). First, we considered all

interrogated DNA methylation sites within 20 kb of any

GENCODE v14 annotated transcription start site, and plotted

the temporal distribution of methylation nadir times in 500 bp

bins ranging from 220 kb to +20 kb (Figure 3A). Visual

inspection revealed an association between physical position of a

DNA methylation site relative to the nearest transcription start

site, and the timing of the nadir of methylation, with sites closest to

Figure 2. Comparison of observed and permuted null datasets. (A) Mean and (B) Median proportion of methylation variance collectively
explained by cosine curves in the 10000 permuted null (open bars) and the observed (red line) datasets, considering all 420,132 sites. In none of the
permuted datasets did the mean or median percentage of variance explained exceed that in the observed data, indicating that the probability of the
observed data having occurred by chance alone is p,0.0001. (C) Comparison of the timing of the nadirs of methylation at all 420,132 sites in the null
(black) and the observed (red) datasets. The nadir times are uniformly distributed in the null datasets. In contrast, the nadir times are significantly
non-randomly clustered in the observed data (H2 = 10449.1; p,2.2610216 by the Rao test for equality of dispersions).
doi:10.1371/journal.pgen.1004792.g002

24h Rhythms of Human Dorsolateral Prefrontal Cortex DNA Methylation

PLOS Genetics | www.plosgenetics.org 4 November 2014 | Volume 10 | Issue 11 | e1004792



the transcription start site being most likely to reach their

methylation nadir in the early morning (,5:30) while those

upstream and downstream being more likely to reach their

methylation nadir in the evening (,20:30). To formally test this,

we stratified DNA methylation sites into those between 220 kb

and 21 kb of transcription start sites, those between 21 kb and

+1 kb of transcription start sites, and those within +1 kb and

+20 kb of transcription start sites (Figure 3B). The temporal

distributions of methylation nadir times in these three groups

differed significantly (H1 = 7136.9; p,2.2610216 by the Rao test

for equality of polar direction).

The higher the amplitude of cycling, the more likely it is to be

biologically significant. We therefore examined in more detail the

subset of DNA methylation sites with the highest amplitude of

cycling. We defined a site as high amplitude if the fit cosine curve

had a peak-to-trough amplitude of rhythmicity greater than 10%

of the mean value of methylation. We examined the distribution of

such high-amplitude sites by dividing the 20 kb upstream and

downstream of each transcription start site into 500 bp bins as

above, and we determined the proportion of high amplitude DNA

methylation sites in each bin. High-amplitude DNA methylation

sites were enriched in the 1000 kb around transcription start sites

compared to other genomic regions (x2 64712.6, p,2.2610216;

Figure 3C).

We then repeated the above analyses, except that rather than

dividing the genome into bins based on position relative to

transcription start sites, we incorporated information about other

gene landmarks and divided the genome into 9 bins: regions

within 2 kb upstream of transcription start site, in the 59UTR, in

the 1st exon, in the 1st intron, in other exons, in other introns and

in the 39UTR of protein coding transcripts; regions in or within

2 kb upstream of non-protein coding transcripts; and intergenic

regions (defined as all other genomic regions). Sites in the 2 kb

upstream of transcription start sites, and in the 59UTR, 1st exon,

Figure 3. The timing and amplitude of DNA methylation at sites near transcription start sites is distinct from other DNA
methylation sites. (A) Heat map of the distribution of methylation nadir times as a function of distance from the transcription start site, considering
all DNA methylation sites, in 500 bp bins. Each row depicts a one-hour bin of clock time. Red indicates a greater than expected density of methylation
nadir times; blue indicates a less than expected density of methylation nadir times. (B) The same data depicted as histograms stratified into three
groups: sites between 220 kb and 21 kb relative to the nearest transcription start site, sites between 21 kb and +1 kb of the nearest transcription
start site, and sites between +1 kb and +20 kb of the nearest transcription start site. DNA methylation sites near transcription start sites have a
tendency to reach their methylation nadir in the early morning, peaking at 5:30, while sites elsewhere are most apt to reach their methylation nadir in
the evening, peaking at 20:30 (H1 = 7136.9; p,2.2610216 by the Rao test for equality of polar direction). (C) The proportion of all DNA methylation
sites that have a peak to trough difference of more than 10% of the mean methylation level in 500 bp bins relative to the nearest transcription start
site. High-amplitude rhythmic DNA methylation sites are enriched in the 1000 kb around transcription start sites (x2 64712.6, p,2.2610216).
doi:10.1371/journal.pgen.1004792.g003
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and 1st intron were most likely to reach their methylation nadir in

the early morning, while those in other exons/introns, the 39UTR,

noncoding transcripts, and intergenic regions were most likely to

peak in the evening (H1 = 14683.8; p,2.2610216 by the Rao Test

for equality of polar direction; Figure 4A–B). Moreover, the 2 kb

upstream of transcription start sites, the 59UTR, and the 1st exon

were relatively enriched in sites with relative high amplitude

oscillations as described above (x2 51250.8, p,2.2610216;

Figure 4C).

DNA methylation is hypothesized to play a role in regulating

gene transcription. In a subset of 536 participants (Table S1), we

generated RNA sequencing data from the same tissue blocks used

to generate the DNA methylation data, quantifying the expression

level of GENCODE v14 annotated transcripts containing or

within 2 kb of high amplitude DNA methylation sites, and

detectible in at least 10% of our samples. A total of 69,605

GENCODE transcripts spanning 15,091 genes containing or near

20,656 high amplitude DNA methylation sites met these criteria.

As for the methylation data, we considered RNA abundance for

each transcript for each sample as a function of time of death and

fit cosine curves. From these fit curves, we determined the timing

of peak RNA abundance (Supporting File 2). We divided genomic

Figure 4. Sites in gene regions proximate to the transcription start site have a phase and amplitude distinct from other gene
regions. (A) Heat map of the distribution of methylation nadir times for DNA methylation sties in various gene regions, considering all GENCODE v14
transcripts. (B) The same data expressed as histograms. Sites in the 2 kb upstream of the nearest transcription start site and in the 59UTR, 1st exon,
and 1st intron are most likely to reach their methylation nadir in the early morning, while those in other exons/introns, the 39UTR, noncoding
transcripts, and intergenic regions are most likely to peak in the evening (H1 = 14683.8; p,2.2610-16 by the Rao Test for equality of polar direction).
(C) The proportion of DNA methylation sites with high amplitude (peak to trough difference of.10% of the mean methylation level) in each gene
region. The 2 kb upstream of the TSS, the 59UTR, and the 1st exon are relatively enriched in sites with high amplitude oscillations (x2 51250.8, p,
2.2610216).
doi:10.1371/journal.pgen.1004792.g004
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regions into 7 bins based on gene landmarks as above, excluding

non-coding transcripts and intergenic regions, and repeated the

above analyses except that rather than considering the absolute

clock time of the nadir of methylation at each site, we considered

the timing of the nadir of methylation relative to timing of peak

RNA expression of the associated transcript. Where a DNA

methylation site was associated with more than 1 transcript, the

circular mean of the peak times of all associated transcripts was

taken, and the timing of the nadir of methylation was taken

relative to this time. There was a significant clustering of nadir

methylation times relative to the timing of peak RNA abundance

for DNA methylation sites in the 2 kb upstream of the

transcription start site, the 1st exon, the 59UTR, and to a lesser

extent the 1st intron (p = 1.7610242, p = 8.5610229,

p = 2.7610229, and p = 6.2610213 respectively by Rayleigh’s

test), with the nadir of methylation preceding the timing of peak

RNA abundance by 1–3 hours for sites 2 kb upstream of the TSS,

in the 59UTR, in the 1st exon, and in the 1st intron (Figure 5). By

contrast, no such clustering was seen for sites in other exons, other

introns, and the 39UTR (p.0.05 for all).

A number of clinical factors such as age [12], sex [13,14], and

presence of Alzheimer’s disease [15] have been described to

impact 24-hour rhythms. Moreover, dorsolateral prefrontal cortex

molecular 24-hour rhythms may plausibly reflect or impact

observed behavioral 24-hour rhythms. We therefore examined

the impact of these factors on the amplitude and timing of 21,282

high amplitude DNA methylation sites (including intergenic sites).

We assessed the effect of these variables on the parameters of DNA

methylation rhythmicity by considering extended cosine models of

the form M = m+(b1+b2x)*cos(t2bA2bBx) [Eq3] where x repre-

sents high vs. low age, male vs. female sex, present vs. absent

Alzheimer’s disease, or high vs. low behavioral rhythmicity, b2

reflects the effect of x on amplitude, and bB reflects the effect of x

on phase. Female sex, higher age, and absence of dementia were

Figure 5. The timing of methylation for DNA methylation sites with high amplitude oscillations is time locked to the timing of peak
RNA abundance. (A) Heat map depicting the time of the nadir of methylation relative to the timing of RNA abundance for the associated transcript,
for high amplitude DNA methylation sites (i.e. amplitude of oscillation at least 10% of the mean methylation level) in or near GENCODE v14 annotated
transcripts. Negative numbers mean that the nadir of methylation precedes peak RNA abundance and positive numbers indicate that the nadir of
methylation follows peak RNA abundance. Red indicates a greater than expected density, while blue indicates a lesser than expected density. (B) The
same data depicted as histograms in 1-hour bins. The dark line indicates the timing of peak RNA abundance. The red line indicates the angular mean
time of the methylation nadir. The p-value is for Rayleigh’s test for uniformity on the circle. The nadirs of methylation for sites in the 2 kb upstream of
the transcription start site, the 59UTR, the 1st exon, and to a lesser extent the 1st intron were significantly temporally clustered relative to the timing of
peak RNA abundance (p = 8.1610221, p = 1.4610215, p = 1.2610215, and p = 3.161027 respectively by Rayleigh’s test) with the nadir of methylation
preceding peak RNA abundance by 1–3 hours. There was no such temporal clustering in other exons, other introns, and the 39UTR.
doi:10.1371/journal.pgen.1004792.g005
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associated with an earlier average phase of rhythms of methylation

(Figure 6) while the presence of Alzheimer’s disease, female sex,

higher age, and lower ante-mortem actigraphic rhythmicity were

associated with a lower average amplitude of methylation rhythms

(Figure 7).

Discussion

Using data from 420,132 DNA methylation sites spanning all 22

autosomes from 738 post-mortem human dorsolateral prefrontal

cortex samples, and associated RNA sequencing data in a subset of

536 of these, this study provided evidence of 24-hour rhythms of

DNA methylation whose parameters were closely related to the

position of DNA methylation sites relative to gene landmarks. In

particular, the timing of DNA methylation rhythms at sites

proximate to transcription start sites had a characteristic phase-

relationship with rhythms of RNA expression such that the nadir

of methylation preceded the peak of expression by 1–3 hours.

Moreover, gene regions proximate to the transcription start site

were relatively enriched in DNA methylation sites with higher

amplitude oscillations. In addition, higher amplitude rhythms of

DNA methylation were associated with more robust ante-mortem

rest-activity rhythms measured by actigraphy. Finally, age, sex,

and the presence of Alzheimer’s disease were significantly

associated with characteristic differences in the amplitude and

timing of 24-hour rhythms of DNA methylation. Taken together,

these results suggest that cyclical alterations in DNA methylation

status, particularly of DNA methylation sites proximate to

transcription start sites, may influence 24-hour rhythms of RNA

expression. Moreover, they raise the possibility that that altered

24-hour rhythms of DNA methylation may be an important

mediator of the effects of age, sex, and dementia on physiological

and behavioral 24-hour rhythms.

That 24-hour rhythms of histone acetylation and chromatin

conformational change play an important role in driving and

modulating 24-hour cycles expression of clock and clock output

genes in at least some model mammalian organisms is established

[3,16,17]. The role of DNA methylation in mammalian circadian

rhythms is less clear. While DNA methylation is thought to be a

relatively stable epigenetic modification, recent work has shown it

to be much more dynamic than previously thought [18,19]. A role

for site-specific cycles of clock gene methylation in modulation of

circadian rhythms has recently been established in Neurospora

[20]. Moreover, others have recently demonstrated a role for non-

circadian plasticity of DNA methylation in mediating the effect of

light on the period of the intrinsic circadian clock in mice [6], and

in modulating the endocrine response to changes in photoperiod

in hamsters [7]. However, to our knowledge, site-specific 24-hour

rhythms of DNA methylation have not to date been demonstrated

in any mammalian tissue, including human neocortex. Moreover,

while 24-hour rhythms of global DNA methylation have been

reported in human white blood cells [21], the site-specific

temporal architecture underlying this observed phenomenon was

unclear, as was the extent to which similar rhythms can be found

in non-blood tissues.

In this study of 420,132 CpG sites distributed across all 22

autosomes, we found evidence for significant 24-hour rhythmicity

of DNA methylation in human dorsolateral prefrontal cortex with

a temporal organization and amplitude exceedingly unlikely to be

attributable to chance alone. Our results differ somewhat from

recent studies of mouse liver [8] and suprachiasmatic nucleus [6],

which found no significant 24-hour rhythms of promoter-region

DNA methylation. There are several potential reasons for this

discrepancy. First, there is a fundamental difference of species

(human vs. mouse) and tissue (neocortex vs. liver/suprachiasmatic

nucleus). Second, the present study examined methylation across

the 24-hour cycle, whereas these other recent studies compared

methylation levels at a small number of discrete circadian times,

which would have missed rhythmic DNA methylation sites whose

acrophase and nadir were out of phase with the sampling times.

Figure 6. The effects of sex, age, Alzheimer’s disease, and 24-
hour activity rhythms on the timing of rhythms of methylation.
Circular histograms of the effect of clinical variables on the timing of the
nadir of methylation of 21,282 high amplitude DNA methylation sites, in
1 hour bins. P-values determined using Rao’s Test for the equality of
polar directions. Dark lines indicate angular means. (A) Female vs. Male
Sex. (B) Age above vs. below median (88.4 years). (C) Present vs. absent
Alzheimer’s Disease based on NIA-Reagan Criteria (intermediate/
high = present; low/no = absent). (D) High vs. low actigraphic rhythmic-
ity based on 24-hour activity rhythms determined ante-mortem in a
subset of 134 participants by actigraphy and quantified using the
interdaily stability metric as described in the text. Female sex, higher
age, and absence of dementia were associated with an earlier timing of
methylation nadirs.
doi:10.1371/journal.pgen.1004792.g006
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Third, the present study examined individual DNA methylation

sites on a genome-wide scale, including all gene regions, and

stratified by location relative to gene landmarks, whereas these

other recent studies examined only promoter-region DNA

methylation sites. Finally, the present study had a much larger

number of tissue samples (n = 738), allowing greater statistical

power to detect rhythmicity.

Our data support a differential functional role for 24-hour

rhythms of DNA methylation depending on the location of the

DNA methylation site. Regions proximate to transcription start sites

(e.g. within 2 kb upstream of the transcription start site, the 59UTR,

the 1st exon, or the 1st intron) were particularly highly enriched for

high amplitude rhythmic DNA methylation sites, and the timing of

methylation rhythms at these sites was time-locked to rhythms of

local gene expression, with the timing of the nadir of methylation

preceding the peak of gene expression by 1–3 hours. This suggests

that 24-hour rhythms of DNA methylation at sites proximate to

transcription start sites may play a particular role in regulating the

transcription of rhythmic transcripts. This is in keeping with the

hypothesis that methylation sites near the transcription start site are

most likely to play a role in regulating transcription, while those

elsewhere may play non-transcription related roles [22]. Mean-

while, the clustering of methylation nadir times between 18:00 and

22:00 for sites removed from transcription start sites is in

Figure 7. The effects of sex, age, Alzheimer’s disease, and 24-hour activity rhythms on the amplitude of rhythms of methylation.
Amplitudes expressed as percentage of mean methylation at each site for 21,282 high amplitude DNA methylation sites. Horizontal lines indicate
medians. Boxes indicate interquartile ranges. P-values calculated using the Wilcoxon rank-sum test. (A) Female vs. Male Sex. (B) Age above vs. below
median (88.4 years). (C) Present vs. absent Alzheimer’s Disease based on NIA-Reagan Criteria (intermediate/high = present; low/no = absent). (D) High
vs. low actigraphic rhythmicity based on 24-hour activity rhythms determined ante-mortem in a subset of 134 participants by actigraphy and
quantified using the interdaily stability metric as described in the text. Greater age, presence of AD by NIA-Reagan criteria, female sex, and lower
ante-mortem actigraphic rhythmicity were associated with a lower median amplitude of cycling.
doi:10.1371/journal.pgen.1004792.g007
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concordance with previous work in mouse liver showing a global

decrease in DNA methylation in the later afternoon [23].

In this study, men had relatively later rhythms of DNA

methylation than women. This is in keeping with our previous

work showing that men have 24-hour rhythms of neocortical clock

gene expression [24] and activity [25] that are relatively delayed

compared to females. We also observed in our data that greater

age was associated with relatively earlier and lower amplitude

rhythms of DNA methylation and that the presence of patholog-

ically confirmed Alzheimer’s disease was also associated with

relatively lower amplitude and delayed rhythms of rhythms of

DNA methylation. This is concordant with previous work showing

a relative phase advance of several measures of circadian

rhythmicity with increasing age [25] [12], and a relative decrease

in amplitude of other measures of circadian rhythmicity in the

context of dementia [15,26]. Finally, in the subset of 134

individuals who had actigraphic recordings prior to death, those

individuals who had less robust 24-hour rhythmicity on their

actigraphic recordings also had on average somewhat attenuated

rhythms of DNA methylation at the time of death, supporting a

link between 24-hour rhythms of neocortical DNA methylation,

and 24-hour rhythms of behavior. As this study was cross-sectional

in nature, the causal relationship between age, dementia,

dorsolateral prefrontal cortex 24-hour DNA methylation rhythms,

and behavioral 24-hour rhythms cannot be determined from these

data alone, and further studies, particularly in animal models of

aging and neurodegeneration, will be needed. Moreover, whether

these differences are fundamentally due to differences a the level of

the dorsolateral prefrontal cortex, or reflect differences in the

function of the central circadian pacemaker, or even differences in

confounding environmental exposures cannot be deduced from

our data.

This study has a number of methodological strengths. We

assessed DNA methylation and RNA expression on a genome-

wide scale and in all gene regions, allowing comparison of the

circadian properties of DNA methylation sites in the promoter

region, 59UTR, exons, introns, 39UTR, and intergenic regions.

Moreover, we measured DNA methylation and RNA expression

from the same samples, allowing the inference of temporal

correlations. Also, the large number of subjects and high temporal

density of sampling (.50 data points per hour) allows a much

more precise consideration of phase relationships than would be

possible in an experiment where the data were sampled less

frequently (e.g. every hour or two) as is the case in many circadian

studies. Moreover, the use of neocortical tissue from humans

rather than model organisms enhances the potential for clinical

translation. In addition, the fact that all of the participants were

organ donors ensures accurate determination of time of death and

short postmortem intervals. Finally, these data were obtained from

subjects living in the community, rather than in a laboratory,

making the data more directly applicable to real-world scenarios.

In considering these data, a few methodological points are

worth noting. In this study, we inferred group-level average 24-

hour rhythms of DNA methylation and RNA expression from

postmortem samples and were limited in exploring individual level

differences in 24-hour rhythmicity. However, ethical factors

preclude serial sampling of neocortical tissue from naturally

behaving individuals, which would be necessary to obtain true

individual-level characterization of 24-hour rhythms of neocortical

DNA methylation. Moreover, behavioral state at death (e.g. sleep/

wake) and environment (e.g. light exposure) at death were not

known. Therefore, it is possible that the observed 24-hour rhythms

were confounded by rhythmic differences in behavior, environ-

ment, behavioral state, or medical status at death. While

laboratory-based experimental designs (e.g. forced-desynchrony

experiments) exist that can decouple environmental/behavioral

effects from circadian effects, similar studies on human neocortical

tissue cannot be performed in the context of such experiments.

Further studies of neocortical DNA methylation in model

organisms studied under controlled conditions will be needed to

distinguish environmental, behavioral, and circadian components

of 24-hour rhythms of neocortical DNA methylation. Finally,

DNA methylation was assessed using data from a beadset (the

Illumina 450k Array) with specifically selected methylation sites

rather than a more unbiased approach that generates truly

genome-wide data. Thus, it is conceivable that the methylation

sites represented on the beadset platform that we used may not be

completely representative of DNA methylation sites as a whole,

particularly with regard to intergenic regions that are relatively

under-represented on the Illumina 450k Array.

Taken together, the data from this study suggest that as in

Neurospora, 24-hour cycles of DNA methylation, particularly at

sites proximate to the transcription start site, may be an important

mechanism regulating 24-hour rhythms of gene expression in the

human brain and potentially other human and mammalian

tissues. Furthermore, they add to the growing body of evidence

that mammalian DNA methylation, once thought to be a relatively

stable epigenetic mark, can be dynamic on time scales as short as

hours. These results also invite examination of the role of 24-hour

rhythms of DNA methylation in the regulation of 24-hour rhythms

of gene expression and tissue biology in other clinically important

human tissues such as myocardium and liver. Moreover, work in

mammalian model systems is needed to identify mechanisms

underlying site-specific 24-hour rhythmic DNA methylation.

Materials and Methods

Participants
This study included participants from two ongoing longitudinal

cohort studies of older individuals: the Religious Orders Study

(ROS) and the Rush Memory and Aging Project (MAP). The MAP

is a community-based study of aging in the greater Chicago area.

Recruitment and assessment procedures are described elsewhere

[27]. Participants are free of dementia at study enrollment, and

agree to annual evaluations and brain donation upon death. At the

time of the current analyses, 1667 individuals had completed

baseline evaluation and 485 had died, with cerebral cortex DNA

methylation data passing quality control criteria (see below)

available from 402. The ROS is a longitudinal study of aging in

Catholic priests, nuns, and brothers from across the USA. A detailed

description can be found elsewhere [28]. At the time of the current

analyses, 1172 ROS participants had completed baseline evaluation

and 569 had died, with cerebral cortex DNA methylation data

passing quality control criteria (see below) available from 346. Of

the 748 samples with adequate DNA methylation data, 2 did not

have an accurate time of death recorded and were excluded from

our analyses. Because all participants in the ROS and MAP are

organ donors, time of death is well captured in both cohorts. After

quality control filtering (see below) data from 738 participants were

included in the current analyses. Characteristics of the study

participants are shown in Table 1.

Statement of ethics approval
The study was conducted in accordance with the latest version

of the Declaration of Helsinki and was approved by the

Institutional Review Board of Rush University Medical Center.

Written informed consent was obtained from all subjects, followed

by an Anatomic Gift Act for organ donation.
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Evaluation of dorsolateral prefrontal cortex DNA
methylation

DNA methylation was assessed in 746 human postmortem

dorsolateral prefrontal cortex samples as previously described

[29,30]. Frozen 100 mg dorsolateral prefrontal cortical blocks

were thawed on ice and gray matter was manually dissected for

DNA extraction using the QIAamp DNA Mini Kit (Qiagen,

Venlo, Netherlands; Cat: 51306). DNA concentration was

measured by using the Quant-iT PicoGreen Kit (Life Technol-

ogies, Carlsbad, CA) and 16 mL of DNA from each sample at a

concentration of 50 ng/mL was assayed using the Illumina

Infinium HumanMethylation450k Bead Chip assay (Illumina,

San Diego, CA) by the Broad Institute’s Genomics Platform. Raw

data generated from Illumina 450k platform were processed using

Genome Studio software Methylation Module v1.8 (Illumina, San

Diego, CA) to generate beta-values and detection p-values for

485,513 CpG across the human genome following color channel

normalization and background removal. We excluded from

analysis probes with detection p-values.0.01 in any sample,

probes in which 47/50 nucleotides matched sex chromosome

sequences during sequence alignment using BLAT [31], probes in

which a SNP with a minor allele frequency. = 0.01 exists within

10 base pairs upstream or downstream of the CpG site, and probes

on the sex chromosomes, leaving 420,132 autosomal CpGs in the

dataset.

Sample quality was assessed using principal component analysis

and we included only those samples having principal component

1, 2 and 3 (PC1, PC2 and PC3) values within +/23 standard

deviations from their respective means. We also excluded subjects

with poor bisulfite conversion efficiency, defined as having at least

2 of the 10 bisulfite conversion control probes failing to reach a

value of 0.8. After these exclusions, we had 738 remaining

samples.

Missing data were imputed and approximated using the k-

nearest neighbor algorithm with k = 100. Following quality control

filtering as above, data from 738 subjects were available for

analysis.

Evaluation of clock gene transcript expression
RNA was extracted from dorsolateral prefrontal cortex blocks

from a subset of 536 individuals (Table S1) using the miRNeasy

mini kit (Qiagen, Venlo, Netherlands) and the RNase free DNase

Set (Qiagen, Venlo, Netherlands). These samples were quantified

by Nanodrop (Thermo Fisher Scientific, Waltham, MA) and an

Agilent Bioanalyzer was used to assess quality. Samples with

Bioanalyzer RNA integrity (RIN) score of 5 or less or with less

than 5 mg of RNA were excluded. RNA sequencing library

preparation was performed by the Broad Institute Genomics

Platform using the strand specific dUTP method [32] with poly-A

selection [33]. This consists of poly-A selection followed by first

strand specific cDNA synthesis, and then uses dUTP for second

strand specific cDNA synthesis followed by fragmentation and

Illumina adapter ligation for library construction. Sequencing was

performed on the Illumina HiSeq with 101 bp paired-end reads

and achieved coverage of 150M reads for the first 12 samples,

which served as a deep coverage reference. The remaining

samples were sequenced with coverage of 50M reads. Next, we

trimmed off beginning and ending low quality bases, trimmed

adapter sequences from the reads, and removed ribosomal RNA

reads. We then used the Bowtie 1 software package [34] to align

the trimmed reads to the reference genome. Finally, we used the

RSEM software package to estimate, in units of fragments per

kilobase per million fragments mapped (FPKM), expression levels

for 69,605 GENCODE v14 transcripts overlapping with high

amplitude DNA methylation sites or whose transcription start sites

were within 2 kb of such DNA methylation sites.

Assessment of clinical covariates
Age was computed from the self-reported date of birth and the

date of death. Sex was recorded at the time of the baseline

interview.

Individuals were classified as having/not having clinical

dementia as previously described [35]. Briefly, trained technicians

annually administered 21 cognitive tests spanning 5 cognitive

domains [36]. The results of cognitive tests were reviewed by a

neuropsychologist to determine the presence or absence of

cognitive impairment. At each annual evaluation, a clinician

combined the most current available cognitive and clinical data to

determine whether the subject had dementia or not according to

the NINDS-ADRDA criteria [37]. The final determination of the

presence/absence of dementia at the time of death was based on

consideration of all cognitive assessments prior to death. For a

pathological diagnosis of Alzheimer’s disease, as described

previously [38], Bielschowsky silver stain was used to visualize

neurofibrillary tangles, diffuse plaques, and neuritic plaques in the

frontal, temporal, parietal, and entorhinal cortices, and the

hippocampus. Braak stages 0 through VI were assigned based

upon the distribution and severity of neurofibrillary tangle

pathology [39]. All cases received a neuropathologic diagnosis of

no Alzheimer’s disease, low likelihood Alzheimer’s disease,

intermediate likelihood Alzheimer’s disease, or high likelihood

Alzheimer’s disease based on the National Institutes of Aging

(NIA)-Reagan criteria [40].

A subset of 134 participants in the MAP cohort had undergone

up to 10 days of actigraphy a median of 16.0 months prior to

death (Table S2). Study staff placed actigraphs (Actical, Philips

Respironics, Bend, OR) set to record in 15-second epochs on

participants’ nondominant wrists for up to 10 days. We calculated

the interdaily stability statistic [26,41], which is a measure of the

day-to-day regularity of the rest-activity rhythm with 1 indicating

perfect regularity, and 0 indicating no regularity.

Analysis
For both the DNA methylation and RNA expression data, prior

to further analyses, we sought to account for the contribution of

identifiable biological (age, sex, presence/absence of clinical

dementia) and technical (source cohort, post-mortem interval,

batch) factors to the overall variance in expression or methylation

levels at each site, and thereby decrease the ‘‘noise’’ in the data, by

regressing the methylation and expression data against these

factors. After fitting the model, the residuals of the model were

kept and represent the expression or methylation level at each site

adjusted for these factors. This accounts for the contribution of

these factors to the overall ‘‘noise’’ in the mean expression or

methylation levels at each site, but does not preclude assessment of

the effects of these factors on the amplitude and phase of

rhythmicity. Finally, we scaled the methylation or expression level

at each site to the standard deviation for that site considering all

738 subjects.

To identify temporal patterns in DNA methylation at each CpG

site, we considered DNA methylation as a function of clock time of

death, with each subject contributing a single data point to a time

series spanning 24-hours. First, to visually identify trends, we

divided the data into 4-hour bins and plotted the mean expression

levels and 95% confidence intervals of the means. Visual

inspection of these figures suggested that 24-hour rhythms of

DNA would be appropriately modeled using cosine curves.

Therefore, we parameterized daily variation in the DNA
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methylation data using functions of the form: M = m+(b1)*cos(t2

bA)..[Eq1] where m is the mesor (the mean value considering all

time points), (b1) is the amplitude of oscillation, bA is the timing of

the peak, and t is the time of death. For computational efficiency,

equivalent linearized models of the form M = m+bc*cos(t)+
bs*sin(t).[Eq2] were fit using the R function lm() and the

parameters b1 and bA from Eq1 were calculated using the

formulae b1 = (bc
2+bs

2)0.5 and bA = arctan(bs/bc). For all our

analyses, we fixed the period at 24-hours. This is a limitation of

any study design where each individual contributes only 1 data

point to a 24-hour sampling period. All clock times were converted

to radians (2p radians = 24 hours; 0 radians = midnight) for

analysis and then converted back to hours for the purposes of

visual representation.

In our primary analyses, we examined all 420,132 sites together,

to identify aggregate patterns of rhythmicity. To quantify the

probability that the observed data could have occurred by chance

alone, we performed a series of analyses comparing the observed

data to 10,000 permuted null datasets generated by randomly

shuffling the times of death in our data while preserving the

correlation between DNA methylation sites. For each DNA

methylation site in each of these permuted null datasets, we fit a

cosine curve as above, calculated the proportion of variance at that

site explained by the cosine curve, and determined the time of the

acrophase (bA) and nadir (bA-p) of the fit curve. We then carried

out four analyses comparing the observed to the permuted null

data: 1) we calculated the mean total proportion of variance

collectively explained by the individually fit cosine curves in each

of the 10,000 permuted null datasets and in the observed data, and

determined the proportion of null datasets in which this was as

large or larger than the observed data. 2) We repeated this for the

median total proportion of variance collectively explained by the

individually fit cosine curves. 3) We generated a sorted mean

empiric null distribution of proportions of variance explained by

taking the mean of the 10,000 sorted permuted null distributions

(each of length 420,132), and used the Wilcoxon signed-rank test

to compare this with the observed distribution of 420,132

proportions of variance explained. 4) We used the Rao test [42]

to compare the observed distribution of methylation nadir times

(bA-p) to those in the 10,000 permuted null datasets.

We next examined the relationship between the estimated

parameters of rhythmicity (amplitude and phase) at each DNA

methylation site, and the location of the site relative to nearby

transcription start sites. First, we focused in on regions of the

genome within 20 kb of GENCODE v14 annotated transcription

start sites [43]. We divided these regions into 80 equally-spaced

500 bp bins from 220 kb to +20 kb relative to transcription start

sites such that, for instance, the 220,000 bp to 219,500 bp bin

contained all genomic regions ranging from 220,000 bp to

219,500 bp of any GENCODE-annotated transcription start site.

We identified DNA methylation sites contained in each bin,

determined the probability distribution of the timing of the

methylation nadirs at these sites, and represented this visually as a

heat map with the 24-hour cycle divided into 24 equal 1-hour

windows. Visual inspection of this heat map suggested a

differential phase distribution of DNA methylation sites within

1 kb of transcription start sites, those more than 1 kb upstream of

transcription start sites, and those more than 1 kb downstream of

transcription start sites. Therefore, we grouped these DNA

methylation sites into one of three groups (220 kb to 21 kb,

21 kb to +1 kb, and +1 kb to +20 kb), plotted the distribution of

the timing of the methylation nadirs in each group as a histogram,

and compared these temporal distributions using Rao’s test [42].

We then went on to examine for associations between physical

position and the amplitude of 24-hour cycling. We classified

individual DNA methylation sites as high amplitude the peak-to-

trough amplitude of rhythmicity was greater than 10% of the

mean value of methylation at that site. Using the same bins relative

to transcription start sites as above, we determined the proportion

of DNA methylation sites that are high amplitude sites, as a

function of position from the nearest transcription start site.

Enrichment was tested using the chi-square test.

We then repeated the above analyses, except that rather than

dividing the genome into bins based on position relative to

transcription start sites, we incorporated information about other

gene landmarks and divided genomic segments into 9 bins: regions

within 2 kb upstream of transcription start sites, in the 59UTR, in

the 1st exon, in the 1st intron, in other exons, in other introns, and

in the 39UTR of protein coding transcripts; regions in or within

2 kb upstream of non-protein coding transcripts, and intergenic

regions (defined as all other genomic regions).

Following this, we examined the relationship between rhythms

of DNA methylation and RNA abundance for 20,656 DNA

methylation sites classified as high amplitude cycling sites (based

on an amplitude of cycling .10% of the mean value of

methylation) and lying in or within 2 kb of GENCODE v14

annotated transcripts in a subset of 536 subjects who had both

DNA methylation and RNA sequencing data. We considered all

GENCODE v14 [43] isoforms detected in at least 10% of our

samples. We divided genomic regions into 7 bins based on gene

landmarks as above, excluding non-coding transcripts and

intergenic regions, and repeated the above analyses except that

rather than considering the absolute clock time of the nadir of

methylation at each site, we considered the timing of the nadir of

methylation relative to timing of peak RNA expression of the

associated transcript. Where a particular DNA methylation sites

was associated with more than one transcript, the angular mean of

the peak time of all associated transcripts was taken, and the

timing of the nadir of methylation was taken relative to this time.

These analyses were first visually represented as a heat map, and

then a formal bin-by-bin analysis was performed using Rayleigh’s

test [44] to test for temporal clustering of methylation nadir times

relative to the timing of peak RNA expression.

We next examined the impact of age, sex, presence/absence of

Alzheimer’s disease, and the regularity of ante-mortem rest-

activity rhythms measured by actigraphy on the amplitude and

timing of 21,282 high-amplitude DNA methylation (those

described above plus high amplitude intergenic sites). We

dichotomized age into high vs. low based on the median (i.e.

above or below 88.4 years age time of death), sex into male vs.

female, and Alzheimer’s disease into present/absent based on

NIA-Reagan criteria [40] intermediate/high vs. low/no. We

dichotomized the subset of 134 individuals who had antemortem

actigraphy into high vs. low behavioral rhythmicity based on their

interdaily stability values being above or below the median (i.e.

above or below 0.49). At each high amplitude rhythmic DNA

methylation site, we fit extended cosine models of the form

M = m+(b1+b2x)*cos(t2bA2bBx) [Eq3] where x represents high vs.

low age, male vs. female sex, present vs. absent Alzehimer’s

disease, or high vs. low behavioral rhythmicity, b2 reflects the

effect of x on amplitude, and bB reflects the effect of x on phase. As

above, for computational efficiency, we fit linearized versions of

Eq3 similar to Eq2 using the function lm() and determined the

values of b2 and bB from this. We then used the Wilcoxon rank-

sum test to compare the distribution of amplitudes between levels

of each dichotomous predictor, and used Rao’s test to compare the
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distribution of methylation nadir times between levels of each

dichotomous predictor.

In total, the analyses described above include 24 independent

hypotheses tested. Applying the Bonferroni-Holm correction we

therefore set the threshold for significance for each of these tests at

p = 0.05/24 = 0.002.

For all analyses, visual examination of residual plots confirmed

that cosine curves of the form described above provided a

functionally appropriate description of temporal trends and

confirmed model assumptions of homogeneous variance.
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