10 research outputs found

    Amorphous silicon-based microchannel plate detectors with high multiplication gain

    Full text link
    With their fast response time and a spatial resolution in the range of a few microns, microchannel plates (MCPs) are a prominent choice for the development of detectors with highest resolution standards. Amorphous silicon-based microchannel plates (AMCPs) aim at overcoming the fabrication drawbacks of conventional MCPs and the long dead time of their individual channels. AMCPs are fabricated via plasma deposition and dry reactive ion etching. Using a state-of-the-art dry reactive ion etching process, the aspect ratio, so far limited to a value of 14, could be considerably enhanced with a potential for very high gain values. We show first fabricated AMCP devices and provide an outlook for gain values to be expected based on the fabrication results.Comment: Preprin

    A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.

    Get PDF
    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation

    Towards Single Photon Detection with Amorphous Silicon Based Microchannel Plates

    No full text
    An exciting new approach for microchannel plate (MCP) detectors could help make them suitable for single photon detection. State-of-the-art clean room technology allows amorphous silicon based microchannel plates (AMCPs) to take a variety of shapes. This versatility together with a new form of on-chip integration enables detector configurations that can be manufactured to meet the exact requirements of the application. The collection efficiency can be increased to 100% while maintaining a maximum gain. With channel lengths of 60 um and diameters below 3 um, the detector gains are now in a range where low level signals can be amplified. In this thesis, we extend the fabrication possibilities of MCP detectors towards structures with diameters in the sub micrometer range, where we expect high gains and excellent timing. We found the minimum channel length of AMCPs with high gain to be 30 um. We show that the timing of such narrow channels is one of the fastest signal amplifications compared to other technologies. Their fast timing together with their high spatial resolution make them a valuable solution for applications where sub millimeter precision is crucial, for example in medical imaging. The results of the thesis alleviate the fabrication process of AMCPs, as the deposition of thick amorphous silicon layers has been identified as the current bottleneck of the fabrication. Through the detailed analysis of secondary emission properties and the implementation in a Monte-Carlo model we can now confidently predict the response of AMCPs with various shapes to a single incident electron. This now provides a quick path to adapt the AMCP configuration directly to the application and makes them a viable alternative to other single photon detectors

    A comprehensive analysis of electron emission from a-Si:H/Al2O3 at low energies

    No full text
    Recently developed microchannel plates based on amorphous silicon offer potential advantages with respect to glass based ones. In this context, secondary electron emission at very low energies below 100 eV has been studied for relevant materials for these novel devices. The aim of this work was to quantify the low energy electron emission - secondary emission and elastic scattering - from amorphous silicon and alumina and the dependence of the emission energy distribution on the primary electron energy, which was previously unknown. Secondary emission and energy distribution were both modelled and measured using equipment particularly designed for this energy range. The effects of roughness, angle of incidence and surface composition were analysed. We show crossover energies as well as the angular dependence of electron emission from amorphous silicon and alumina, with a maximum experimental emission yield value of 2 and 2.8, respectively, at an incident angle of 75°. A parameterization for the energy dependence of the emission energy spectrum at low energies was derived. This extensive analysis is fundamental for a comprehensive understanding of the performance of amorphous silicon-based microchannel plate detectors. It provides a complete model for secondary electron emission for a detailed description of the detector operation. The present results thus set the basis for a simulation framework, which is an essential element to increase the performance of these detectors and enable further developments

    Una tonadilla escénica para la Navidad: "Los Payos y el Alcalde", del Señor Marcolini

    Get PDF
    Invasion and persistence of bacteria within host cells requires that they adapt to life in an intracellular environment. This adaptation induces bacterial stress through events such as phagocytosis and enhanced nutrient-restriction. During stress, bacteria synthesize a family of proteins known as heat shock proteins (HSPs) to facilitate adaptation and survival. Previously, we determined the Staphylococcus aureus HSP ClpC temporally alters bacterial metabolism and persistence. This led us to hypothesize that ClpC might alter intracellular survival. Inactivation of clpC in S. aureus strain DSM20231 significantly enhanced long-term intracellular survival in human epithelial (HaCaT) and endothelial (EA.hy926) cell lines, without markedly affecting adhesion or invasion. This phenotype was similar across a genetically diverse collection of S. aureus isolates, and was influenced by the toxin/ antitoxin encoding locus mazEF. Importantly, MazEF alters mRNA synthesis and/or stability of S. aureus virulence determinants, indicating ClpC may act through the mRNA modulatory activity of MazEF. Transcriptional analyses of total RNAs isolated from intracellular DSM20231 and isogenic clpC mutant cells identified alterations in transcription of α-toxin (hla), protein A (spa), and RNAIII, consistent with the hypothesis that ClpC negatively affects the intracellular survival of S. aureus in non-professional phagocytic cells, via modulation of MazEF and Agr

    Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals

    No full text
    The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of timeresolved and temperature-dependent studies at Br K and Pb L-3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.ISSN:0002-7863ISSN:1520-512
    corecore