543 research outputs found

    MASSIV: Mass Assembly Survey with SINFONI in VVDS. V. The major merger rate of star-forming galaxies at 0.9 < z < 1.8 from IFS-based close pairs

    Full text link
    We aim to measure the major merger rate of star-forming galaxies at 0.9 < z <1.8, using close pairs identified from integral field spectroscopy (IFS). We use the velocity field maps obtained with SINFONI/VLT on the MASSIV sample, selected from the star-forming population in the VVDS. We identify physical pairs of galaxies from the measurement of the relative velocity and the projected separation (r_p) of the galaxies in the pair. Using the well constrained selection function of the MASSIV sample we derive the gas-rich major merger fraction (luminosity ratio mu = L_2/L_1 >= 1/4), and, using merger time scales from cosmological simulations, the gas-rich major merger rate at a mean redshift up to z = 1.54. We find a high gas-rich major merger fraction of 20.8+15.2-6.8 %, 20.1+8.0-5.1 % and 22.0+13.7-7.3 % for close pairs with r_p <= 20h^-1 kpc in redshift ranges z = [0.94, 1.06], [1.2, 1.5) and [1.5, 1.8), respectively. This translates into a gas-rich major merger rate of 0.116+0.084-0.038 Gyr^-1, 0.147+0.058-0.037 Gyr^-1 and 0.127+0.079-0.042 Gyr^-1 at z = 1.03, 1.32 and 1.54, respectively. Combining our results with previous studies at z < 1, the gas-rich major merger rate evolves as (1+z)^n, with n = 3.95 +- 0.12, up to z = 1.5. From these results we infer that ~35% of the star-forming galaxies with stellar masses M = 10^10 - 10^10.5 M_Sun have undergone a major merger since z ~ 1.5. We develop a simple model which shows that, assuming that all gas-rich major mergers lead to early-type galaxies, the combined effect of gas-rich and dry mergers is able to explain most of the evolution in the number density of massive early-type galaxies since z ~ 1.5, with our measured gas-rich merger rate accounting for about two-thirds of this evolution.Comment: Published in Astronomy and Astrophysics, 24 pages, 30 figures, 2 tables. Appendix with the residual images from GALFIT added. Minor changes with respect to the initial versio

    Integración de los corpus como herramienta de apoyo en la enseñanza de ESP

    Get PDF
    En los últimos años se ha estudiado la aplicación de los corpus a la enseñanza de lenguas, dada su condición de textos reales. Sin embargo, para ver la validez de la aplicación de los corpus a la enseñanza de lenguas es necesario mostrarlo desde dos perspectivas diferentes: la de los aprendientes y la de los docentes que son quienes van a hacer uso de ellos en el proceso de aprendizaje. Además, aquí se propone su integración en el proceso de aprendizaje como herramienta de apoyo y se muestra un modo sencillo de compilar un corpus de ESP a través de Internet.Recently, the application of corpora to language learning has been studied, due to their condition of real texts. However, in order to consider the utility of this application, it’s needed to show it from two different perspectives: the teacher and the learner, because they are the potential users in the learning process. Moreover, here the integration of corpora in the learning process is seen as an assistance tool, and an easy way to compile an ESP corpus from the Internet

    The miniJPAS survey : white dwarf science with 56 optical filters

    Get PDF
    Aims. We analyze the white dwarf population in miniJPAS, the first square degree observed with 56 medium-band, 145 Å in width optical filters by the Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS), to provide a data-based forecast for the white dwarf science with low-resolution (R ∼ 50) photo-spectra. Methods. We define the sample of the bluest point-like sources in miniJPAS with r 7000 K can be segregated from the bluest extragalactic QSOs, providing a clean sample based on optical photometry alone. Conclusions. The J-PAS low-resolution photo-spectra would produce precise effective temperatures and atmospheric compositions for white dwarfs, complementing the data from Gaia. J-PAS will also detect and characterize new white dwarfs beyond the Gaia magnitude limit, providing faint candidates for spectroscopic follow-up

    Analysis of structural patterns in highly disaggregated bioeconomy sectors by EU Member States using SAM/IO multipliers

    Get PDF
    This report is part of a database and analytical work led by the Joint Research Centre (JRC.D.4, Seville) in cooperation with external experts to improve our understanding of job creation and economic growth in sectors related to the bioeconomy, with a focus on the agrifood sector.JRC.D.4-Economics of Agricultur

    The Dominant Role of Mergers in the Size Evolution of Massive Galaxies since z∼1

    Get PDF
    We estimate the merger rate, both major (stellar mass ratio μ = M★,_2/M★,_1 ≥ 1/4) and minor (1/10 ≤ μ < 1/4), of massive (M★ ≥ 10^(11) M☉) early-type galaxies (ETGs) in the COSMOS field by close pairs statistics. The merger rate of massive ETGs evolves as a power-law (1+z)^n, showing the minor merger little evolution with redshift, n_(mm) ∼ 0, in contrast with the increase of major mergers, n_(MM) = 1.8. Our results shows that massive ETGs have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ∼ 1, leading to a mass growth of ∼ 30%. In addition, μ ≥ 1/10 mergers can explain ∼ 55% of the observed size evolution of these galaxies since z ∼ 1. Another ∼ 20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (μ < 1/10) could contribute with an extra ∼ 20%. The remaining ∼ 5% should come from other processes (e.g., adiabatic expansion or observational effects). These results suggest that mergers are the main contributor to the size evolution of massive ETGs, accounting for ∼ 55%–75% of that evolution in the last 8 Gyr. Nearly half of this merging evolution is related with minor (μ < 1/4) events

    Salón de Otoño: XVIII Salón Internacional de pintores malagueños

    Get PDF
    Como es sabido, tras la muerte del general Franco, a finales de 1975, se produjo una febril actualización de documentación y contenidos respecto al arte del siglo XX, información que había sido arbitrariamente escamoteada por la dictadura y sólo eludida por la acción puntual de escasas galerías comerciales

    The VIMOS VLT Deep Survey. The different assembly history of passive and star-forming L_B >= L*_B galaxies in the group environment at z < 1

    Full text link
    We use the VIMOS VLT Deep Survey to study the close environment of galaxies in groups at 0.2 = L*_B galaxies (Me_B = M_B + 1.1z <= -20) are identified with Me_B <= -18.25 and within a relative distance 5h^-1 kpc <= rp <= 100h^-1 kpc and relative velocity Delta v <= 500 km/s . The richness N of a group is defined as the number of Me_B <= -18.25 galaxies belonging to that group. We split our principal sample into red, passive galaxies with NUV - r >= 4.25 and blue, star-forming galaxies with NUV - r < 4.25. We find that blue galaxies with a close companion are primarily located in poor groups, while the red ones are in rich groups. The number of close neighbours per red galaxy increases with N, with n_red being proportional to 0.11N, while that of blue galaxies does not depend on N and is roughly constant. In addition, these trends are found to be independent of redshift, and only the average n_blue evolves, decreasing with cosmic time. Our results support the following assembly history of L_B >= L*_B galaxies in the group environment: red, massive galaxies were formed in or accreted by the dark matter halo of the group at early times (z >= 1), therefore their number of neighbours provides a fossil record of the stellar mass assembly of groups, traced by their richness N. On the other hand, blue, less massive galaxies have recently been accreted by the group potential and are still in their parent dark matter halo, having the same number of neighbours irrespective of N. As time goes by, these blue galaxies settle in the group potential and turn red and/or fainter, thus becoming satellite galaxies in the group. With a toy quenching model, we estimate an infall rate of field galaxies into the group environment of R_infall = 0.9 - 1.5 x 10^-4 Mpc^-3 Gyr^-1 at z ~ 0.7.Comment: Astronomy and Astrophysics, in press. 11 pages, 11 figures, 4 tables. Minor changes with respect to the first versio
    • …
    corecore