457 research outputs found

    Genome Sequencing of a Marine Spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, from Japan

    Get PDF
    Oceanospirillum multiglobuliferum ATCC 33336T is a motile gammaproteobacterium with bipolar tufted flagella, noted for its low salt tolerance compared to other marine spirilla. This strain was originally isolated from the putrid infusions of Crassostrea gigas near Hiroshima, Japan. This paper presents a draft genome sequence for O. multiglobuliferum ATCC 33336T

    Draft Genome Sequence of the Salt Water Bacterium Oceanospirillum linum ATCC 11336T

    Get PDF
    Oceanospirillum linum ATCC 11336T is an aerobic, bipolar-tufted gammaproteobacterium first isolated in the Long Island Sound in the 1950s. This announcement offers a genome sequence for O. linum ATCC 11336T, which has a predicted genome size of 3,782,189 bp (49.13% G+C content) containing 3,540 genes and 3,361 coding sequences

    The Time-Domain Spectroscopic Survey: Understanding the Optically Variable Sky with SEQUELS in SDSS-III

    Get PDF
    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ~220,000 optically-variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ~320 deg^2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample, and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars, and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M-dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population, based on their H-alpha emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ~15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.Comment: 17 pages, 14 figures, submitted to Ap

    Cautionary Tale of Using Tris(alkyl)phosphine Reducing Agents with NAD+-Dependent Enzymes

    Get PDF
    Protein biochemistry protocols typically include disulfide bond reducing agents to guard against unwanted thiol oxidation and protein aggregation. Commonly used disulfide bond reducing agents include dithiothreitol, β-mercaptoethanol, glutathione, and the tris(alkyl)phosphine compounds tris(2-carboxyethyl)phosphine (TCEP) and tris(3-hydroxypropyl)phosphine (THPP). While studying the catalytic activity of the NAD(P)H-dependent enzyme Δ1-pyrroline-5-carboxylate reductase, we unexpectedly observed a rapid non-enzymatic chemical reaction between NAD+ and the reducing agents TCEP and THPP. The product of the reaction exhibits a maximum ultraviolet absorbance peak at 334 nm and forms with an apparent association rate constant of 231–491 M−1 s−1. The reaction is reversible, and nuclear magnetic resonance characterization (1H, 13C, and 31P) of the product revealed a covalent adduct between the phosphorus of the tris(alkyl)phosphine reducing agent and the C4 atom of the nicotinamide ring of NAD+. We also report a 1.45 Å resolution crystal structure of short-chain dehydrogenase/reductase with the NADP+–TCEP reaction product bound in the cofactor binding site, which shows that the adduct can potentially inhibit enzymes. These findings serve to caution researchers when using TCEP or THPP in experimental protocols with NAD(P)+. Because NAD(P)+-dependent oxidoreductases are widespread in nature, our results may be broadly relevant

    Baryon Acoustic Oscillations in the Ly{\alpha} forest of BOSS DR11 quasars

    Get PDF
    We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly{\alpha} forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1z3.52.1\le z \le 3.5 from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z=2.34)D_A(z=2.34) and expansion rate, H(z=2.34)H(z=2.34), both on a scale set by the sound horizon at the drag epoch, rdr_d. We find DA/rd=11.28±0.65(1σ)1.2+2.8(2σ)D_A/r_d=11.28\pm0.65(1\sigma)^{+2.8}_{-1.2}(2\sigma) and DH/rd=9.18±0.28(1σ)±0.6(2σ)D_H/r_d=9.18\pm0.28(1\sigma)\pm0.6(2\sigma) where DH=c/HD_H=c/H. The optimal combination, DH0.7DA0.3/rd\sim D_H^{0.7}D_A^{0.3}/r_d is determined with a precision of 2%\sim2\%. For the value rd=147.4 Mpcr_d=147.4~{\rm Mpc}, consistent with the CMB power spectrum measured by Planck, we find DA(z=2.34)=1662±96(1σ) MpcD_A(z=2.34)=1662\pm96(1\sigma)~{\rm Mpc} and H(z=2.34)=222±7(1σ) kms1Mpc1H(z=2.34)=222\pm7(1\sigma)~{\rm km\,s^{-1}Mpc^{-1}}. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Ly{\alpha} forest cross-correlation. The auto-correlation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rdD_A/r_d and DH/rdD_H/r_d that are, respectively, 7% low and 7% high compared to the predictions of a flat Λ\LambdaCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is 2.5σ\approx 2.5\sigma.Comment: Accepted for publication in A&A. 17 pages, 18 figure

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    Get PDF
    We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe

    Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded Field Photometry and Cluster Fiducial Sequences in ugriz

    Full text link
    We present photometry for globular and open cluster stars observed with the Sloan Digital Sky Survey (SDSS). In order to exploit over 100 million stellar objects with r < 22.5 mag observed by SDSS, we need to understand the characteristics of stars in the SDSS ugriz filters. While star clusters provide important calibration samples for stellar colors, the regions close to globular clusters, where the fraction of field stars is smallest, are too crowded for the standard SDSS photometric pipeline to process. To complement the SDSS imaging survey, we reduce the SDSS imaging data for crowded cluster fields using the DAOPHOT/ALLFRAME suite of programs and present photometry for 17 globular clusters and 3 open clusters in a SDSS value-added catalog. Our photometry and cluster fiducial sequences are on the native SDSS 2.5-meter ugriz photometric system, and the fiducial sequences can be directly applied to the SDSS photometry without relying upon any transformations. Model photometry for red giant branch and main-sequence stars obtained by Girardi et al. cannot be matched simultaneously to fiducial sequences; their colors differ by ~0.02-0.05 mag. Good agreement (< ~0.02 mag in colors) is found with Clem et al. empirical fiducial sequences in u'g'r'i'z' when using the transformation equations in Tucker et al.Comment: 30 pages, 25 figures. Accepted for publication in ApJS. Version with high resolution figures available at http://www.astronomy.ohio-state.edu/~deokkeun/AnJohnson.pd
    corecore