44 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics

    Get PDF
    Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory

    The neurokinin-1 receptor antagonist aprepitant in co-morbid alcohol dependence and posttraumatic stress disorder: a human experimental study

    No full text
    Rationale: Posttraumatic stress disorder (PTSD) and alcoholism are frequently comorbid, suggesting the possibility of overlapping neural substrates. The neurokinin 1 (NK1) receptor for substance P (SP) has been implicated in both stress- and alcohol-related behaviors. The NK1 antagonist aprepitant, clinically available as a treatment for chemotherapy-induced nausea, offers a tool to probe a potential role of the SP/NK1 system in comorbid PTSD and alcoholism. Objectives: The aim of this study is to evaluate the efficacy of aprepitant for treatment of comorbid PTSD and alcoholism. Methods: Fifty-three patients with PTSD and alcoholism were admitted for 4 weeks to an inpatient unit at the NIH Clinical Center and randomized to double-blind aprepitant (125 mg/day; based on PET studies reporting >90 % central receptor occupancy at this dose) or placebo. After reaching steady state, subjects were assessed for PTSD symptom severity, behavioral and neuroendocrine responses to stress and alcohol cues, and functional magnetic resonance imaging (fMRI) responses to stimuli with positive or negative emotional valence. Results: Aprepitant treatment had no effect on PTSD symptoms or subjective or physiological responses to stress or alcohol cues. However, aprepitant robustly potentiated ventromedial prefrontal cortex (mPFC) fMRI responses to aversive visual stimuli. Conclusions: Despite the lack of effect on PTSD symptoms and responses to stress/alcohol cues, NK1 antagonism activated the ventral mPFC, an area considered hypoactive in PTSD, during exposure to aversive stimuli. Because this brain area is critically important for extinction of fear memories and in alcohol craving and relapse, our finding suggests that NK1 antagonism might be a useful pharmacological treatment to enhance extinction-based cue-exposure therapies
    corecore