39 research outputs found

    Not the End of the World? Post-Classical Decline and Recovery in Rural Anatolia

    Get PDF
    Between the foundation of Constantinople as capital of the eastern half of the Roman Empire in 330 CE and its sack by the Fourth Crusade in 1204 CE, the Byzantine Empire underwent a full cycle from political-economic stability, through rural insecurity and agrarian decline, and back to renewed prosperity. These stages plausibly correspond to the phases of over-extension (K), subsequent release (Ω) and recovery (α) of the Adaptive Cycle in Socio-Ecological Systems. Here we track and partly quantify the consequences of those changes in different regions of Anatolia, firstly for rural settlement (via regional archaeological surveys) and secondly for land cover (via pollen analysis). We also examine the impact of climate changes on the agrarian system. While individual histories vary, the archaeological record shows a major demographic decline between ca .650 and ca. 900 CE in central and southwestern Anatolia, which was then a frontier zone between Byzantine and Arab armies. In these regions, and also in northwest Anatolia, century-scale trends in pollen indicate a substantial decline in the production of cereal and tree crops, and a smaller decline in pastoral activity. During the subsequent recovery (α) phase after 900 CE there was strong regional differentiation, with central Anatolia moving to a new economic system based on agro-pastoralism, while lowland areas of northern and western Anatolia returned to the cultivation of commercial crops such as olive trees. The extent of recovery in the agrarian economy was broadly predictable by the magnitude of its preceding decline, but the trajectories of recovery varied between different regions

    Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy

    Get PDF
    There is a lack of high-resolution records of hydroclimate variability in the Eastern Mediterranean from the late glacial and early Holocene. More knowledge of the speed of climate shifts and the degree to which they were synchronous with changes in the North Atlantic or elsewhere is required to understand better the controls on Eastern Mediterranean climate. Using endogenic carbonate from a sediment sequence from Nar GölĂŒ, a maar lake in central Turkey, dated by varve counting and uranium-thorium methods, we present high-resolution (∌25 years) oxygen (ÎŽ18O) and carbon isotope records, supported by carbonate mineralogy data, spanning the late glacial and Holocene. ÎŽ18Ocarbonate at Nar GölĂŒ has been shown previously to be a strong proxy for regional water balance. After a dry period (i.e. evaporation far exceeding precipitation) in the Younger Dryas, the data show a transition into the relatively wetter early Holocene. In the early Holocene there are two drier periods that appear to peak at ∌9.3 ka and ∌8.2 ka, coincident with cooling ‘events’ seen in North Atlantic records. After this, and as seen in other records from the Eastern Mediterranean, there is a millennial-scale drying trend through the Mid Holocene Transition. The relatively dry late Holocene is punctuated by centennial-scale drought intervals, at the times of 4.2 ka ‘event’ and Late Bronze Age societal ‘collapse’. Overall, we show that central Turkey is drier when the North Atlantic is cooler, throughout this record and at multiple timescales, thought to be due to a weakening of the westerly storm track resulting from reduced cyclogenesis in the North Atlantic. However, some features, such as the Mid Holocene Transition and the fact the early Holocene dry episodes at Nar GölĂŒ are of a longer duration than the more discrete ‘events’ seen in North Atlantic records, imply there are additional controls on Eastern Mediterranean hydroclimate

    Salted Landscapes in the Tuz GölĂŒ (Central Anatolia): The End Stage of a Tertiary Basin

    No full text
    Tuz GölĂŒ (Salt Lake) is a large salt lake located in the heart of Anatolia. Long-term morphological development of the lake is controlled by the Tuz GölĂŒ Fault Zone and the Ä°nönĂŒ-EskiƟehir Fault System. The Central Black Sea Mountains in the north and the Taurus Mountain Belt in the south are major climatic barriers generating a precipitation shadow effect on the Anatolian Plateau that worsens the continental climatic conditions characterized here by cold winter, hot summer and relative dryness. Climate, together with active tectonics, let Tuz GölĂŒ to preserve a water depth of maximum 1.5 m. Besides the natural beauty of the outstanding landscapes provided by this shining white lake, numerous salt farms are spread over the lake and neighbouring small lakes. Archaeological data evidence that salt exploitation and trade centres around Tuz GölĂŒ were established since prehistoric and during ancient historic times. This natural and cultural heritage is now threatened by anthropogenic and climatic factors that might lead to its disappearance in a foreseeable future. © 2019, Springer Nature Switzerland AG
    corecore