133 research outputs found

    Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    Get PDF
    Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT: PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cellsopen4

    Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

    Get PDF
    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 × 1017 cm−3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity

    Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis

    Get PDF
    Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/ mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (&sim;0.2 &mu;C/ cm2) and another, larger charge (40 &mu;C/cm2), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of &sim;5, independent of bias light intensity. The fast decay (&sim;1 &mu;s at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J&minus;V hysteresis. Capacitance vs open circuit voltage (Voc) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the Voc hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at Voc suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J&minus;V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.</div

    Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites

    Get PDF
    The performance of solar cells based on hybrid halide perovskites has seen an unparalleled rate of progress, while our understanding of the underlying physical chemistry of these materials trails behind. Superficially, CH3NH3PbI3 is similar to other thin-film photovoltaic materials: a semiconductor with an optical band gap in the optimal region of the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress in our understanding of the local and long-range chemical bonding of hybrid perovskites is discussed here, drawing from a series of computational studies involving electronic structure, molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the possibility for the formation of polar (ferroelectric) domains. The ability to independently substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic properties. Finally, ten critical challenges and opportunities for physical chemists are highlighted

    Nanoscale Photovoltaic Performance of Thin Film Solar Cells by Atomic Force Microscopy

    Get PDF
    Research efforts have been going on for decades to improve the efficiency of photovoltaic devices in order to effectively compete with other energy sources. Considering the length scale of the underlying phenomena, scanning probe microscopy (SPM) based techniques are ideally suited for studying solar cells due to their ability to probe functioning materials and devices under operating conditions, and to directly correlate local film structure with local properties. Accordingly, Atomic Force Microscopy (AFM) techniques have been developed and applied in this thesis to investigate the photoelectrical properties of CdTe/CdS polycrystalline thin film solar cells, as well as an emerging technology that utilizes organometallic halide perovskites. As a first approach, a new technique, photoconductive AFM spectroscopy (pcAFMs) has been developed and performed on isolated, strain-relieved, photovoltaic (PV) micro-cells of polycrystalline CdTe in light and dark conditions. Performance metrics of these solar cells are mapped, revealing the behavior of individual grains, grain boundaries, and planar defects, achieving the requisite sub-10 nm spatial resolution. Same methodology has also been applied to spatially map the performance metrics of hybrid perovskite solar cells (PSCs), revealing substantial variations in the PV performance parameters that correlate with the thin-film microstructural features. Similar PSCs are also investigated using piezoforce microscopy (PFM), to show the presence of ferroelectric domains within high quality films, for the first time, as well as evidence for their reversible switching. Two additional AFM techniques are also developed within the scope of this work, for planarizing samples and ultimately achieving nanoscale milling and tomography. With periodic, or simultaneous functional imaging such as photoconductive AFM measurements during such AFM-NanoMilling (AFM-NM), 3-dimensional tomographic datasets are acquired, which revealed the 3-d network of photocarrier pathways in CdTe. In summary, the AFM methods developed and applied in this thesis provide a means to understand the fundamental transport mechanisms in photovoltaic systems with nanoscale resolution, with applicability to the knowledge-driven design of future devices that will have optimized materials and hence properties

    Nanocharacterization of Porous Materials with Atomic Force Microscopy

    Get PDF
    Scanning Probe Microscopy techniques have proven very useful in the investigation of porous nanostructured surfaces. Especially, Atomic Force Microscopy (AFM) has been widely used due to its compatibility with non-conducting surfaces. In particular, AFM often complements other techniques like scanning and transmission electron microscopy by providing quantitative surface information coupled with nanoscale spatial resolution. Its ability to operate in fluid is also important, as this allows researchers to mimic the physiological environment of biological materials and systems. In this work, two main types of porous materials are studied with AFM, including Phosphoric Acid Fuel Cell (PAFC) electrode catalyst layers, and human molar dentin. Although these systems apply to very different areas of materials science, there are many commonalities in terms of feature sizes, surface morphology, and appropriate imaging methods
    corecore