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Principles of Chemical Bonding and Band Gap Engineering in Hybrid
Organic−Inorganic Halide Perovskites
Aron Walsh*

Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY,
U.K.

ABSTRACT: The performance of solar cells based on hybrid halide perovskites has seen an
unparalleled rate of progress, while our understanding of the underlying physical chemistry of
these materials trails behind. Superficially, CH3NH3PbI3 is similar to other thin-film
photovoltaic materials: a semiconductor with an optical band gap in the optimal region of
the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress
in our understanding of the local and long-range chemical bonding of hybrid perovskites is
discussed here, drawing from a series of computational studies involving electronic structure,
molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the
dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the
possibility for the formation of polar (ferroelectric) domains. The ability to independently
substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic
properties. Finally, ten critical challenges and opportunities for physical chemists are
highlighted.

■ INTRODUCTION
Hybrid organic−inorganic halides have been of interest since
the start of the 20th century;1 however, the first report of a
perovskite-structured hybrid halide appears to have been by D.
Weber in 1978.2,3 In the same journal volume, he reported both
CH3NH3PbX3 (X = Cl, Br, I) and the CH3NH3SnBr1−xIx solid
solution. In the subsequent decades, these materials were
studied in the context of their solid-state chemistry and
physics,4−6 with the first solar cell reported in 2009.7 The
resulting explosion of research effort and success in the
photovoltaic applications of these materials has been the
subject of many review papers and commentaries.8−14

Hundreds of materials have been tried and tested for use as
light absorbing layers in solar cells, so one question has been
frequently posed: what makes hybrid halide perovskites special?
The question is difficult to answer with certainty as our
understanding of the physical properties of these materials,
including how the solar cells operate, continues to evolve. One
of the unique features of this class of material is their large
dielectric constants (ϵ0 > 20), compared to conventional
semiconductors (ϵ0 < 20), which include a rotational
component associated with molecular dipole relaxation.
The aim of this Feature Article is to step back and recount

the fundamental physical chemistry underpinning the perform-
anceand potential limitationsof hybrid perovskite materi-
als. The work discussed here is primarily from our research
group;13,15−21 however, many others have contributed to the
computational studies in the area. Simulations on the electronic
structure, alloy formation, and lattice defects have been the
subject of recent review papers.22−25

We previously produced a gentle introduction to the
fundamental chemistry of hybrid perovskites,17 which is not
duplicated here. Instead, we first discuss the principles of

chemical bonding in these systems, followed by approaches to
tune the electronic structure, and finally outline ten outstanding
challenges in the field.

■ CHEMICAL BONDING

The chemical bonding in hybrid perovskites with ABX3
stoichiometry (shown in Figure 1) can be separated into
three distinct components. It should be noted that these
materials are organic−inorganic but not organometallic
following the IUPAC definitionas there is no direct bond
between a metal and carbon atom. In the context of metal−
organic frameworks, they are considered to be I3O0 materials29

due to the combination of a three-dimensional inorganic
network with a zero-dimensional (molecular) organic compo-
nent.

a. Metal Halide Framework. The bonding within the
BX3

− anionic framework is unambiguously heteropolar (mixed
ionic/covalent interactions). The formal oxidation states of
Pb(+2) and I(−1), resulting from the chemical composition,
are a good approximation of the chemical species here.
Electrostatic interactions dominate between ions with net
charge. As usual, the quantification of partial charges remains
ill-defined due to the collective nature of the periodic electronic
wave function.30,31 The Born effective charges in halide
perovskites are large (the value for Pb can exceed 4),32

consistent with high ionicity.
The lattice energy (defined with respect to the ions held

infinitely far apart) and electrostatic site potentials are listed for
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a range of perovskite stoichiometries in Table 1. In comparison
to the three types of oxide (group VI anion) perovskite, for the
halide (group VII anion) perovskite the electrostatic stabiliza-
tion is notably reduced. The lattice energy is just −29.71 eV per
ABX3 cell, with an electrostatic potential on the anion site ca.
50% of the group VI anions. Due to this weaker potential alone,
lower ionization potentials (workfunctions) are expected for
halide perovskites compared to, for example, metal oxides.33,34

A second consequence is that lattice vacancies are facile to
form21 and do not result in deep ionization levels. In contrast,
for rocksalt-structured metal halides, the halide is in an
octahedral coordination environment with a large confining
electrostatic potential. In such cases, a halide vacancy will trap
electrons with ionization levels deep in the band gap: an F-
center.
For CH3NH3PbI3, the formal electronic configurations of Pb

6s26p0 and I 5p6 are apparent from the electronic band
structure, where the upper valence band is formed from the I p
orbitals and the lower conduction band is formed from the
unoccupied Pb p orbitals. There is an admixture of Pb s in the
valence band, but here the cationic lone pair electrons are
stereochemically inactive,35 at least in the equilibrium structural
configuration. Polar instabilities of the Pb(II) ion are common
in ferroelectric and multiferroic oxide perovskites.36

Strong hybridization (orbital overlap) along the octahedral
framework results in light electron (0.15 me) and hole (0.12
me) effective masses a fraction of the free electron mass.19

These light carrier masses provide the means for high-mobility
band transport in high-quality materials. The high atomic
numbers of lead and iodine suggest that relativistic effects are
important for an accurate determination of the electronic
structure.19 Many-body electron−electron interactions have
been shown to be important. These factors combine to make
high-quality electronic structure studies, such as relativistic GW
theory, computationally and methodologically challenging.
While density functional theory calculations can now be
performed routinely on system sizes of up to 100 s of atoms,

Figure 1. Schematic of the perovskite crystal structure with respect to
the A, B, and X lattice sites. The redox chemistry of the component
ions can be used to influence the valence and conduction band
energies and orbital composition, and hence the stability of electrons
and holes in the material.26 Note that for larger molecular A sites
layered perovskites are formed.27,28 Beyond halide perovskites, a wider
range of stoichiometries and superstructures are known, e.g., the
Ruddlesden−Popper, Aurivillius, and Dion−Jacobson phases.

Table 1. Lattice Energy (eV/cell) and Site Madelung
Potentials (in units of V) for a Range of ABX3 Perovskite
Compositions (Cubic Lattice, a = 6 Å) Assuming the Formal
Oxidation State of Each Speciesa

stoichiometry Elattice VA (V) VB (V) VX (V)

I−V−VI3 −140.48 −8.04 −34.59 16.66
II−IV−VI3 −118.82 −12.93 −29.71 15.49
III−III−VI3 −106.92 −17.81 −24.82 14.33
I−II−VII3 −29.71 −6.46 −14.85 7.75

aThe potentials are aligned to a common vacuum level at 0 V. The
hybrid halide perovskites are of type I−II−VII3. Reprinted with
permission from ref 17. Copyright 2014 American Chemical Society.

Figure 2. Schematic of the ordering of molecular dipoles in the presence of an external electric field, as well as the four regimes in the dielectric
response from lowest frequency (electronic excitations) to highest frequency (space charges and electronic or ionic conductivity). Each process will
have a characteristic relaxation time and can combine to give a complex temporal response to an external perturbation.
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for relativistic quasi-particle self-consistent GW theory
CH3NH3PbI3 represents the most complex system studied to
date. Note that this approach is superior to non-self-consistent
G0W0 methods but still neglects electron−phonon coupling,
which may be important for these structurally soft materials.
b. Intermolecular Interaction. Methylammonium is a

closed-shell 18-electron cation. (In contrast to several
erroneous statements in the published literature, CH3NH3

+ is
not a free radical.) The CH3NH3

+ molecules in neighboring
cages are ∼6 Å apart. The large permanent electric dipole (2.29
D with respect to the center of charge of the ion) results in an
estimated electrostatic point dipole−dipole interaction energy
of 25 meV.16 For two static dipoles, the interaction tails off as
(1/r3); however, the screening effect of two freely rotating
dipoles shortens this Keesom force (one component of the van
der Waals interaction) to (1/r6).
As the dipole−dipole interaction energy is comparable to

available thermal energy at room temperature, we expect a
complex ferroelectric behavior. Monte Carlo simulations have
shown that for a fixed lattice a striped antiferroelectric
alignment of dipoles is favored at low temperatures, which
become increasingly disordered and finally paraelectric at high
temperatures.17 At room temperature, there is significant local
structure which can be linked with regions of high and low
electrostatic potential. Even for a single-crystal film the
topology of the electrostatic potential resembles a bulk
heterojunction more familiar to organic photovoltaics. Larger
polar domain structures have recently been observed from
piezoelectric force microscopy, which may be associated with
effects from local chemical and lattice strain.37 Tunable
ferroelectric polarization has also been predicted to occur in
the Sn analogues.38

The orientation of molecular dipoles is involved in the
unusual dielectric response of CH3NH3PbI3. At high (optical)
frequencies, there exists the standard electronic response of the
system to an applied electric field. At lower (THz) frequencies,
an additional vibrational response from lattice phonons gives
rise to the static dielectric constant of 25 (previously computed
from density functional perturbation theory).19 The molecular
response occurs at even lower frequencies (GHz regime),
which can be associated with rotational order. Toward audio
frequencies a “colossal” permittivity emerges, which can be
linked to ionic and/or electronic conductivity: the Maxwell−
Wagner effect. These contributing factors are summarized in
Figure 2.
c.. Molecule−Framework Interaction. The dominant

bonding between the molecule (A site) and framework is
electrostatic in nature. CH3NH3

+ is a positively charged ion
inside a negatively charged cage, so there is a strong
electrostatic potential (∼8 V; Table 1) holding the molecule
at its lattice site.
An additional electrostatic contribution to the chemical

bonding between the molecular dipole and the PbI6 octahedra
is the charge−dipole interaction, which is dependent on the
dipole orientation. There is also the effect of primary
polarization. Given the appreciable polarizability of the I−

ions (ca. 7 × 10−24 cm3), an induced dipole interaction is
expected (the so-called Debye force). Due to these interactions,
a correlation is expected between molecular orientation and
octahedral deformation in molecular dynamic simulations;17

more in-depth studies are ongoing. The molecular dipole−
framework interaction has also been discussed in terms of
hydrogen bonds; however, both interactions are electrostatic in

nature and are difficult to distinguish between. The significant
mobility of the cations (including hydrogen atoms) at room
temperature16 does suggest that a dipole interaction is a more
appropriate and general description.
The van der Waals interaction collectively describes the

intermolecular (Keesom force) and molecule−framework
(Debye force) interactions discussed above. It should be
noted, however, that the term “van der Waals” is sometimes
used synonymously with “London dispersion”. Within density
functional theory, there are now many flavors of dispersion-
corrected exchange-correlation functional, which aim to recover
a description of the London force (secondary polarization)
associated with dynamic correlation. By taking a first-generation
generalized-gradient functional (e.g., PBE39) which over-
estimates equilibrium bond lengths by 1−2%, the addition of
a weakly attractive r−6 potential will result in better agreement
with experimental structures. It does not require that these
interactions are “London dispersion” in nature. Our approach
has been to employ a functional optimized for solids (e.g.,
PBEsol40 or HSE0641), which quantitatively describes structural
parameters of dense materials without system-specific para-
metrization. In addition to improved lattice parameters, PBEsol
also describes the vibrational properties of solid-state systems
more accurately.42

From this discussion, it is clear that a variety of interactions
give rise to the properties of the hybrid perovskites important
to their photovoltaic performance. In particular, the combina-
tion of the light carrier effective masses provided by the metal
halide framework and the strong dielectric screening
including the molecule−framework and intermolecular inter-
actionsfavors free carrier generation over excitons (bound
electron−hole pairs) upon illumination.

■ BAND GAP ENGINEERING

It is possible to chemically substitute on all of the perovskite
lattice sites, and appropriate examples of each can be found in
the literature. It is important to recognize the chemical
distinction between the three approaches.
In the limit of a small perturbation, the physical response to a

hydrostatic volume change can be described by the band gap
deformation potential43

α =
∂

∂
E

VlnV
g

(1)

which for CH3NH3PbI3 is positive (αV
R = 2.45 eV).17 As the

fundamental band gap is determined at the boundary of the
Brillouin zone (R for the pseudocubic structure), the out-of-
phase band-edge states are stabilized as the lattice expands.
Temperature-dependent photoluminescence indicates a de-
crease in band gap with decreasing temperature (lattice
contraction) from 1.61 eV at 300 K to 1.55 eV at 150 K,
which is at the onset of a phase change.44 The chemical effects
of substitution will generally exceed this physical volume effect,
as discussed below.

A-Site Substitution. The A site of CH3NH3PbI3 does not
directly contribute to the frontier electronic structure, but it can
have an indirect influence by changing the crystal structure
(Figure 3).
Following eq 1, lower band gap values should be observed

for smaller molecular cations. The replacement of CH3NH3
+ by

NH4
+ in the perovskite lattice reduces the band gap by 0.3 eV.19

The smallest possible counterion is a proton (H+); HPbI3 has a
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theoretical cubic perovskite lattice parameter of 6.05 Å and an
associated band gap of less than 0.3 eV.17

The limitation of this logic (hydrostatic deformation) is the
relationship between the size of the ion and the local structure.
For example, in reality both NH4PbI3 and HPbI3 adopt
alternative chain or layer structures due to a mismatch in ionic
radius.45,46 The geometric constraints for the formation of a
stable perovskite lattice are summed up in the radius ratio rules,
which have been recently extended to hybrid perovskites.47 An
A-site ion too small for the BX3 framework results in an
instability of the octahedral networks with respect to tilting,
which can change the electronic properties (e.g., a transition
from an antiferroelectric to ferroelectric phase).
CH3NH3PbI3 has a Goldschmidt tolerance factor of 0.91

(unstable with respect to tilting). NH4PbI3 has a tolerance
factor of 0.76, and an alternative nonperovskite structure is
favored. More asymmetric molecular ions (e.g., formamidinium,
NH2CHNH2

+ or FA) can also result in “built-in” structural
distortions due to their deviation from spherical symmetry. The
chemical and physical strains associated with the molecular
substitution cannot be neglected when considering band gap
engineering.48

The choice of A-site ions that are too large for the BX3
framework can result in layered perovskite structures (e.g.,
Ruddlesden−Popper type An−1A2′BnX3n+1 phases). The quan-
tum confinement associated with these layered structures has
itself attracted significant interest.27,28

B-Site Substitution. Substitution on the B site can be used
to directly alter the conduction band. Isovalent substitution of
Pb for Sn has been successfully reported;49 however, Sn(II) is
less chemically stable in an octahedral environment.50

Oxidation to Sn(IV) results in the low performance and high
carrier concentrations found for the Sn halide perovskites. The
stability of Ge(II) is further reduced, owing to its lower binding
energy 4s2 electrons and is unlikely to result in a candidate
photovoltaic material.
The so-called “double” perovskites are well-known for metal

oxides. Here the B site is substituted by two aliovalent ions
(one higher and one lower oxidation state)

→ ′ + •2B B BB B B (2)

An example here would be the substitution of Pb(II) by Bi(III)
and Tl(I), which is likely to reduce the electronic band gap due
to the lower binding energy of the Bi 6p orbitals and the
fluctuations in electrostatic potential caused by the combination

of monovalent and trivalent ions. An advantage of this approach
is that controlled substitutions beyond the 1:1 stoichiometry
could be used to influence the n-type (excess Bi) or p-type
(excess Tl) carrier concentrations.

X-Site Substitution. For CH3NH3PbI3, the anion (X site)
dictates the valence band energy.15 The observed band gap
changes upon halide substitution are influenced by the
electronic states of the anion; i.e., from Cl to Br to I the
valence band composition changes from 3p to 4p to 5p with a
monotonic decrease in electron binding energy (lower
ionization potential). The valence band energy varies by as
much as 0.6 eV between the methylammonium chloride and
iodide perovskites. This holds true for other choices of the
molecular ion: the substitution of Br by I in FAPbX3 decreases
the optical band gap from 2.23 to 1.48 eV.51

The successful incorporation of the tetrafluoroborate
polyanion into the perovskite structure has been recently
reported.52 We have shown, however, that both BF4

− and PF6
−

do not hybridize significantly with Pb, which results in an
increase in the band gaps and a decrease in the band widths.20

Such substations, if stable structures were formed, could be
exploited to produce a novel high-k dielectric with potential
applications in transistors or memristors.

■ CONCLUSION AND CHALLENGES

In addition to their application in photovoltaics, hybrid halide
perovskites display a rich physical chemistry. We have discussed
the salient features of their chemical bonding and routes to
tuning the properties beyond the widely studied methylammo-
nium lead iodide.
Hybrid halide perovskites still pose many fundamental

challenges relating to their physical chemistry and chemical
physics. Ten issues of current interest include:

1. Local structure  the average crystal structure inferred
from standard X-ray diffraction experiments is likely to
be far from the local structure of the perovskite
framework.

2. Dynamic disorder  knowledge is required of the time
scales associated with molecular motion and how this
changes from single crystals to thin films and with the
method of preparation.

3. Lattice point defects  there have been reports of n-
type, p-type, and intrinsic semiconducting samples of
CH3NH3PbI3. What causes this behavior, and how can
the semiconductivity be controlled?

4. Ionic conductivity  many perovskite materials support
vacancy-mediated ion diffusion. Is iodine, methylammo-
nium, or hydrogen mass transport contributing to low-
frequency impedance spectra?

5. Surface and interfaces  the chemical nature of
extended defects is poorly understood, in particular the
interface between the perovskite and the hole transport
layer.

6. Ferroelectricity  simulations demonstrate short-range
ferroelectric order at room temperature; however,
external electric fields and internal strains will change
this behavior.

7. Grain boundaries and domain walls  the perovskite
microstructure may provide alternative pathways for
conductivity and electron−hole separation or recombi-
nation. What is their form and abundance?

Figure 3. Calculated natural band offsets of CH3NH3PbI3 and related
materials based on density functional calculations (with quasi-particle
corrections). Interfacial or surface electric dipoles (or quadrupoles) are
not considered here. Adapted with permission from ref 17. Copyright
2014 American Chemical Society.
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8. Increased stability the long-term air instability of these
materials is in part associated with the volatility of the
molecular components. The development of alternative
ions without labile protons would be advantageous.

9. Pb-free compositions  a major goal remains to identify
a (stable) Pb-free material that maintains the same
exceptional performance as CH3NH3PbI3 in solar cells.
The difficulty is in maintaining a small band gap with
lighter metals.

10. Device models  there are standard electron transport
models for p−n junction devices and extensions to bulk
heterojunctions; however, there is no band transport
model that encompasses the complex behavior of the
hybrid perovskites including current−voltage hysteresis.
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