201 research outputs found

    Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

    Get PDF
    Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal

    The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study

    Get PDF
    Abstract: Aims/hypothesis: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control

    Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes:An IMI-DIRECT study

    Get PDF
    AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk

    Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium

    Get PDF
    \ua9 2019, The Author(s). Aims/hypothesis: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). Methods: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6–24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. Results: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean \ub1 SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants’ clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants’ clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. Conclusions/interpretation: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes

    Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study

    Get PDF
    The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired β cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments

    Predicting and elucidating the etiology of fatty liver disease : A machine learning modeling and validation study in the IMI DIRECT cohorts

    Get PDF
    Background Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Methods and findings We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n= 795) or at high risk of developing the disease (n= 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (= 5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86;p = 5%) rather than a continuous one. Conclusions In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see:) and made it available to the community.Peer reviewe

    Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study

    Get PDF
    The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired β cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments

    Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study

    Get PDF
    Objective We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). Research Design and Methods 732 recently diagnosed T2D patients from the IMI-DIRECT study were extensively phenotyped over three years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS) and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. Results Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS, and increasing CLIm; visceral or liver fat, HDL-cholesterol and triglycerides had further independent, though weaker, roles (R2=0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from AUROC=0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS and CLIm was relatively stable (odds ratios 0.07 to 0.09). T2D polygenic risk score and baseline pancreatic fat, GLP-1, glucagon, diet, and physical activity did not show an independent role. Conclusions Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of T2D patients in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression

    Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: an overview of the data from the epidemiological studies within the IMI DIRECT Consortium

    Get PDF
    Background and aims: Understanding the aetiology, clinical presentation and prognosis of type 2 diabetes (T2D) and optimizing its treatment might be facilitated by biomarkers that help predict a person’s susceptibility to the risk factors that cause diabetes or its complications, or response to treatment. The IMI DIRECT (Diabetes Research on Patient Stratification) Study is a European Union (EU) Innovative Medicines Initiative (IMI) project that seeks to test these hypotheses in two recently established epidemiological cohorts. Here, we describe the characteristics of these cohorts at baseline and at the first main follow-up examination (18-months).Materials and methods: From a sampling-frame of 24,682 European-ancestry adults in whom detailed health information was available, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm and enrolled into a prospective cohort study (n=2127) undertaken at four study centres across Europe (Cohort 1: prediabetes). We also recruited people from clinical registries with recently diagnosed T2D (n=789) into a second cohort study (Cohort 2: diabetes). The two cohorts were studied in parallel with matched protocols. Endogenous insulin secretion and insulin sensitivity were modelled from frequently sampled 75g oral glucose tolerance (OGTT) in Cohort 1 and with mixed-meal tolerance tests (MMTT) in Cohort 2. Additional metabolic biochemistry was determined using blood samples taken when fasted and during the tolerance tests. Body composition was assessed using MRI and lifestyle measures through self-report and objective methods.Results: Using ADA-2011 glycaemic categories, 33% (n=693) of Cohort 1 (prediabetes) had normal glucose regulation (NGR), and 67% (n=1419) had impaired glucose regulation (IGR). 76% of the cohort was male, age=62(6.2) years; BMI=27.9(4.0) kg/m2; fasting glucose=5.7(0.6) mmol/l; 2-hr glucose=5.9(1.6) mmol/l [mean(SD)]. At follow-up, 18.6(1.4) months after baseline, fasting glucose=5.8(0.6) mmol/l; 2-hr OGTT glucose=6.1(1.7) mmol/l [mean(SD)]. In Cohort 2 (diabetes): 65% (n=508) were lifestyle treated (LS) and 35% (n=271) were lifestyle + metformin treated (LS+MET). 58% of the cohort was male, age=62(8.1) years; BMI=30.5(5.0) kg/m2; fasting glucose=7.2(1.4)mmol/l; 2-hr glucose=8.6(2.8) mmol/l [mean(SD)]. At follow-up, 18.2(0.6) months after baseline, fasting glucose=7.8(1.8) mmol/l; 2-hr MMTT glucose=9.5(3.3) mmol/l [mean(SD)].Conclusion: The epidemiological IMI DIRECT cohorts are the most intensely characterised prospective studies of glycaemic deterioration to date. Data from these cohorts help illustrate the heterogeneous characteristics of people at risk of or with T2D, highlighting the rationale for biomarker stratification of the disease - the primary objective of the IMI DIRECT consortium
    corecore